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I. Preface __- 

Very many realistic models assume that the state of the system 

under study depend both on the past values of the state 2s well 2s 

on the past values of the derivative of the state. Such systems are 

governed by neutral functional differential equations (NFDE). 'When 

the system is dependent on the past values of the state but is inde- 

pendent of the past values of the derivative the system's dynamics 

may be described by a retarded functional differential equation. 

Often the principle of causality prevails and the future stete of 

the system is independent of the past and is determined solely by 

the present. Such systems can often be assumed to be described by 

ordinary differential equations. One very powerful tool used to 

study the asym$otic behavior of ordinary differential equations is 

the generalized energy functions of the models. Yoshizawa [1,2] 

utilized them to give necessary -and sufficient conditions for the 

uniform boundedness and uniform ultimate boundedness of ordinaq 

and delay equations. A recent attempt was made by Lopes [33 to use 

such functions to obtain a sufficient condition for all solutions of 

and NFDE to be uniformly bounded and unifo-rzity ultimately bounded. 

This effort iras not quite complete and differs somewhat from the 

ordinary and delay cases. The first chapter of this report defines 

a class of NFDE for which it is possible to develop a theory of 

boundedness and ultimate boundedness of solutions using Yoshizaxx 

type functions. As a by-product the existence of periodic solutions 

for such NFDE's is proved. Numerous specific applications are also 

given. 



In chepter III, we apply the theory developed in chapter II, 

to prove the uniform bowrdedn~ss and uniform ultimate bgundedness 

of a neutral functional differential equation of Lwie type. In- 

spired by a similar treatment by Burton [lLl we also ex-plore the 

boundedness problen for wide class of general ordinary and delay 

equations. In chapter IV the problem of Lw-ie (which already has 

had an extensive history [16,iT]) is posed for NFDE. Usin.q a 

theorem of Cruz and Hale [5], sufficient conditions are obtained 

for absolute stability for the controlled system if it is assumed 

that the uncontrolled plant equation is uniformly asymptotically 

stzble. Both the direct and indirect control cases are treated. 

The next two chapters exanine some fuTdnment.al questions con- 

cerning the controllability of systems sovexed by retarded 

equations and NFDE when it is assumed that the controls RR con- 

strained to lie on some compact convex subsets of the Euclidean 

space EE. For linear functional differential equations of retarlkd 

type in vhich the power available is unlkited and controls arc un- 

constrained, Banks, Jacobs znd Lsngenhop [35] have derived necessary 

(1) and sufficient conditions for controllability in the Sobolev space U2 

Jacobs and Langenhop [23] have obtained necesssry and sufficient con- 

(1) ditions for the controllability in bi2 for linear autonomous difCer- 

ential difference equations of neutral type with unconstrained controls 

In chapter V we consider the nonlinear neutral functional differential 

inclusion 

(1) 2 D(t+,) c R(t.xt) 
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where D is a continuous operator on IxC, linear in x t' indeed of 

the form (4) in chapter V, with kernel D(t,*) = IO], and atomic 

at 0, and R is nonempty, closed and convex. Here I z [t,,t,], and 

C = C([-h,O],E"). We use Fan fixed point theorem [22] to prove 

the existence of a solution of the inclusion (1) which setisfies 

two point boundary values xt 
0 

= Q,, xt 
1 

= O,, where +O,Q1 belong 

to c. We next apply this existence result to study the exact 

function space controllability of the neutr?.l functional differ- 

ential system 

(2) 2 D(t,xt) = f(t+,u), u(t)E n(t,x,) . 

We present sufficient conditions on f and fi which imply exact con- 

trollability between two fixed functions in C. 

In chapter VI, we return to systems described by delay equations 

and consider both the Euclidean and the fwction space controllability 

of the control system 

(3) x(t) = L(t,xt) + k(t,u), t )t,,, 

x(o) E 0 t E [tO-h.tOl > 

when the available control power is limited and the controls have 

values restricted to compact and convex su3set.s of E". We use a geo- 

metric growth condition to characterize bot5 types of controllability 

This extends analogous results for ordinary differential systems 

[391-[41] and yields conditions under which perturbed nonlinear delay 

controllable systems are controllable. 

The concluding chapter indicates further areas of research. 

3 



II. Ultimate Boundedness of Solutio"s of Sow Xonlinenr Nelitral 
Differential Equations 

1. Introduc'ion. L In this chapter we study the wiform-boundedness and 

uniform ultimate boundedness of solutions of certain types of neutral 

functional differential equl-tions. For delay systems, i'oshizava [l] 

treated such problems by exte:?ding the ideas of Liasunov: he used Liapunov 

function&s whose properties are siniler to those he utilized in his study 

of ordinary differential equations [?I. In [3], Lopes combined Lia?unov 

functionzls 2nd Rzzumikhin technique; to prove ultizxte boundedness. Aside 

from the fsct that the applications of his theo~r involves the verification 

of more conditions tha are used in cases [11 acd [>I, the rrslllts in [3] 

are not quite complete. His conditions are suffizient but not nrce-sax-y. 

I" this paper Razumikhi" techniques a-e avoided; sufficient and necessary 

conditions are given for uniform boundedness and ,xniform ultimate bounded"css. 

in terms of Liapunov functionals alone. This r&uces the number of conditionz 

to be verified. 

An important aspect of our contribution is the treatment of several "on- 

triviel linear and "onlinezr exa!~ples. Explicit Liapunov functionnls are 

constructed, uld the existence of periodic solutions deduced by applying a 

result of Hale and Lopes [4] on the existence of periodic solutions of compact 

dissipative systems. Unlike the apPlications i? [2] the use of Liapunov 

functionals does not put some restrictions on the delay. 

2. Notation, Definitions end Preliminaries. Let h 1.0 be a given real number, 

E " , an n-dinensional linear vector space with nom 1.1 and C = C([-h,O],E") the 

space of continuous functions mapping [-h,O] into En iiith 11$11 = SUP li(e)l 
-h>OO 
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for (p EC. Let t0 be a real number and f,g are continuous functions taking 

[to, ,)xC + En. Assume that g is linear in 0 and that there exists an nxn- 

matrix function n(t,B), t E [tO,m), 0 s I-h,O] which is of bounded variation 

in 8 and there exists a scalar function k(0) continuous and non-decreasing 

for s ~[0,h], k(0) = 0 such that 

g(w) = Jr [dedt,e)140) 

I!; [d,dt,e)h$(e)l~ II(h) sup 14(e)/ 
-h<8<0 -- 

for all t E [to,-), I$ EC. 

Define a functional differential operator 

D(.): [t,,+C + En 

by 

D(t)+ = 4(O) - dt,+), t E ho 24, 4 EC. 

We shall study the functional differential equation of neutral type given by 

(1) -I$ D(t)xt = f(t,xt), t > to 

where xt EC is defined by 

x,(e) = x(t+e), -h 2 8 2 0. 

We shall assume that f(t,$) is locally Lipschitzian in 0 and takes bounded sets 

into bounded sets to ensure the existence, uniqueness and continuous dependence 

of the solution x(tO,$) of (1) on the initial data. Here x(t,,$) is the solution 

with x (to,@) = 4 and its value in E n 
t0 

at time t will be denoted by x(t; tO,$). 

Observe that the initial value problem (1) is equivalent to the integral equation 

(2) D(t$ = D(t,h + It 
t0 

f(t,x$ds, t L tC. 

5 



In Cruz and Hale [5] the concept of a uniformly stable operator was intro- 

duced and was shown to imply the following. 

Definition 2.1. The operator D is uniformly stable if there are constants 

B,a > 0 such that the solution x(t,,$) of the "difference equationlt 

(3) D(t$ = 0, t Lt, 

xtO 
= 4, D(to)$ = 0 

satisfies Ilx,(t,,~)ll~ i3e-a(t-to)ll$l/, t 1_ to. 

Definition 2.2. We say that the solutions of (1) are uniform bounded if for 

each a > 0 there exists B(a) such that if II$II 2 o then IIx,(t,,~)l~ 5 ~(a). 

We say that the solutions of (1) are uniform ultimate bounded for bound B if 

there exists B > 0 and for each a > 0 there exists T(a) such that if I/~]/ 2 a 

we have IIx,(t,,$~)ll 2 B for all t it, + T(a). If V: [tO,m)xC + E is continuous 

we define the llderivativell c(t,$) along solution (2) as 

The following two lemmas are crucial in our investigation. 

Lemma 2.1. (Cruz-Hale [5]). Suppose the Ak, 

matrices T k' ' 2 'k - < h are real numbers such 

if N > 0. If 

(4) D($J) = a(O) - ; +$J(-T~) 
k=l 

and all roots of the equation 

N 
det[I - 1 A-p -k] = 0 

k=l 

k=1,2,. ..,N are nxn constant 

that the ratio .rj/~k are rational 

have moduli less than 1, then D is uniformly stable. 
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Lemma 2.2. (Cruz-Hale [5]). If D(t) is uniformly stable, then there exists 

positive constants a,b,c,d such that for any h E C([tO,m),En) the solution 

x(tO,@,h) of the equation 

(5) D(t+ = h(t), t 1 to, xt = $ 
0 

satisfies 

(6) IIxt(tO,$,h)ll 5 e-a(t-tO)(bl/$l) + c SUP Ih(u + d sup ih( 
tp2-t ci <u<t -- 

for all t 2 to. Furthermore, the constants a,b,c,d can be chosen so that for 

any s s [t& 

(7) ~~x,(t,,~,h)~~ 2 e-a(t-s)(bllOll + c sup Ih(u + d sup Ih(u 
acue s<u<t -- -- 

Definition 2.3. Let -&- D(t)xt = f(t,xt) with D and f w-periodic. We say it 

defines a compact dissipative process if there is a bounded set B<:C such that 

for any compact set H there is a TO(H) such that 

x(t,to,H)CB for all t 2 to + TO(H). 

Clearly a uniform ultimate bounded process is compact dissipative. 

Proposition 2.1. [41. If the w-periodic NFDE (*) with uniformly stable D 

operator defines a compact dissipative process, then it has an w-periodic 

solution. 

3. Ultimate Boundedness of Solutions of (2). In this section we shall obtain __c-----.- 

a sufficient condition for boundedness by means of a Liapunov functional. 

Throughout what follows the set S of 4 is the set of I$E C such that II~ll 1 R where 

R may be a large positive constant. 



Theorem 3.1. Suppose there exists a continuous functional V: [O,m)xS such that 

(i) u(lD(t)$l) 5 V(t,+) L v(ll+ll) 

where u(r) is continuous increasing positive for r > R and u(r) + 03 as 

r + m, and v(r) is continuous and increasing; 

(ii) $t,$) 1. - w( lD(t)$l), 

where w(r) is continuous and positive for r > R. 

If D(t) is uniformly stable then the solutions of (2) are uniformly bounded 

and uniform ultimate bounded. 

Proof. Suppose the constants a,b,c,d are defined as in Lemma 2.2. For any 

a > 0 (a > R) choose B(a) so that 

ba < t, v(a) < u(g/2(c+d)). 

If $ EC and Ij+II La, suppose that at some tl we have IIxt ,(to,$)II = 8. Since 

Ilxt(to,$)ll is continuous in t and IIxt (t ,4)/I ( cy, there exist t2,t3, 
0 O 

to 2 t.2 5 t3 L 5, such that IIxt l(to,$)l/ = a, Ix(t3; to,Oo) 1 = B3 and for 

t2 < t < t3 we have 

a < ((x,(t,,~)(( < 8. 

Also for t2 Lt Lt3 5 tl, IIxt(tO,$)/ 2 a> R. Eence x,(t,,+) E S. Consider 

the function V(t,x,(t,,$)). Condition (ii) implies that V(t,xt(tO,$)) is non- 

increasing and condition (i) implies that 

u(jD(t)xt(tO,$))) ~V(t,Xt(to'$)) I V(to>O) I v(a) < u(8/2(c+d))* 

Consequently 

ID(t)xt(tO.$) 1 < B/2(c+d) 

for all t E [tz,tll. Since D(t) is stable we deduce from Lemma 2 that 
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IIxt(t0,9)II I.bllO/ + (c+d)8/2(c+d) (ba + B/2 < B. 

That is IIxt(to,+)II < B for all ts [t2,tl]. But IIxt [t ,+)[I = B. Thisis a 
lo 

contradiction. Hence if II+II 2 a we have jjxt(tO,+)II < B(a) for au t it,, 

which proves uniform boundedness. 

For a fixed al 
al 

> a where II = lim[al 4d -] > R there exists a 31(al) 1 0 

such that if Il~ll 2 al we have IIx,(t,,4)/l < B1 for all t 1 to. This follows 

from the uniform boundedness already proved. Now choose y = y(g ,a) > 0 so 

that 

(8) e -aY(B ,a) (b al a + cB/2(c+d)) 1.~ , 

where B in (3) is the uniform bound corresponding to a in the first part of 

the proof. Since f takes bounded sets into bounded sets there exists an L > Cl 

such that If(s,xt(tO,$)l < L for s it,, I/~/I 5". Let k = k(a,B) be the smallest 

integer such that 

k > v(a)/[(al/2d)w(al'4d)]. 

Suppose now there is a solution x(to,+) of (2) *srith II 411 I a 2nd Il xt(to.+I II 2 a1 

for t E J Z to (t 5 t0+2(l+ky). Since a1 > R, we can consider the function 

v(t,x,(t,,W. Condition (i) and (ii) imply that 

u(lD(t)xt(tO,$)l) I V(t,x,(t,,+)) 5 V(t,,$) (v(a) < u(B/Z'(c+d)) 

so that ID(t)xt(tO,$) 1 < B/2(c+d) for all t EJ. In (7) let s = sk, t = s;C where 

'k = t0+(2k-l)y, s; = t0+2ky, k = 1,2,...,k+l. Then by Lemma 2, 

a1 2 ~$(to~@)II I {exP[-a(s;-sk)]3(bj$jj + c sup 

t&u$ 
bb-dxu ) 1 

+d SUP ID(u)xUI 
s <u<s' k-- k 



< eway(ta + @/2(c+d)) + d sup ID(u)x~~. - 
s <U<S' k--k 

That is, 

<L+d 
a1- 2 SUP jDh)xUI - 

s <U<S' k--k 

Therefore there must exist a tk in [s,,sA] such that 

1 D(tu)stk/ 2 2, k=l,2,...,k+l. 

Since II+II 5 c( and If(s,xs(to,$))l < L for all s 2 t0 on the intervals 

'k = [tk - & , tk + 21 we have ID(t)xtl 1 Fd . As a consequence of this 

and condition (ii), ?(t,x+,) < -w(a,/4d), ts Ik, k=1,2,...,k+l. By taking a 

large L if necessary we can assume that these intervals do not overlap, and 

hence we have 

V(tk,xt 
al a1 

k 
) (V(t,,$) - w(al/4d)z(k-1) 2 v(a) - w(al/4d)z(k-1) 

If k-l = K then V(tk,xt (t ,$)) < 0, 
k" 

which is a contradiction since 

u(ID(tk)xt I-) > 0 because II)(tk)xtkl 22 > R. Therefore there must exist a 
k 

t' in the interval J such that l/x,,(t,,$)l/ < al. If t 1 tO + T(a), 

T(a) = 2(1+K(a,g)Y(a,B)) we have IIx,(t,,~)\l < 3,. This completes the proof. 

The converse of Theorem 1 can be given under some restrictions of the 

operator D. 

Theorem 3.2. In (1) assume that D satisfies the inequality 

ID(t)+1 (Nlldl , 

4 EC, where t > 0, and F is locally Lipschitzian in 4 uniformly in t. Assume - 

that the solutions of (1) are uniform bounded and uniform ultimate bounded. 

Then there 

10 



exists a continuous Liapunov functional V(t,@) on IxS which satisfies the 

following conditions 

(a) u(lD(t)lpl > I V(t,$) I v(II$II), 

(b) + (t,4) ( -w(lD(t)$l ) 

where u,v and w have the same properties as in (i) and (ii) of Theorem 1. 

The condition (b) can be replaced by 

(b') +,$) 5 -crV(t,+), c1 > 0. 

(c) V is Lipschitzian, i.e., for any $1,02~ C, t E [O,tO+Tl,there exists 

an M(T) > 0 such that 

I v(t,q - V(W,) 1' 2 MIIty421j- 

The proof of Theorem 3.2 needs the following Lerma, which was communicated to 

the author by Professor Jack Hale. 

Lemma 3.1 (Hale). Assume that D in ( 

ID(t)d I Nlldl 3 

1) satisfies the inequality 

for I$ EC where t Lt,, and F is locally Lipschitzian in @ uniformly in t. 

Then for any-r0 > 0 there is a constant L = L(ro) such that 

IIXt(to~~l) - x,(t,,$,)l/ ( eLctmtO) lj+l-$211 

for all t it,, and $I,,$, for which 

llx,(t,~qll 2 rg llX,(t0Y~2)ll I r(). 

11 



Proof of Theorem 3.2. Since the solutions of (1) are uniform ultimate bounded 

for bound H, say, for any to and any a > 0 there exists T(a), such that if 

I/~/I 5 a we have IIx,(t,,+)ll < H for all t ,tO+T(a). Since the solutions are 

uniform bounded, for each a > 0 there exists f3(a) > 0 such that if \/+I\ 2 a we 

have ~~x,(t,,$)~~ 5 B(a), for all t ) to- Also there exists L(B(a)) > 0 such 

that if 11~111 2 6 and //$211 2 B we have 

1 f(LQ - f(t,@2) 1 I L(B(cL)) ((4y$,(/. 

We can assume T(a), B(a), L(B(a)) are continuous increasing in a. Now define 

V(t,$) as follows 

v(t ,$I = sup G( ID(t+T)xt+T(tO,+) 1 )eT 
Tip 

for 0 it '< 50, $ EC where 

1 

S-H 5 LH 
G(S) = 

0 Ozc<H. 

This G is a non-negative continuous function for 5 2 0 and G(E) + ~0 as 151 + =. 

Also [G(S) - G(P)] 5 15-5’1. Obviously G(/D(t)QI) 5 V(t,$). We also have 

V(t,@) = sup G(ID(t+r)xt+,(tO,O)I)eTc sup G(NIIxt+~(to94)ll)er~ 
-CL0 T>o - 

From the ultimate boundedness and boundedness assumption, there exist ~(Il~lj) 

and ~(11 (PII) such that T(t,$) L. ~(ll+ll) and IIXt+,(t 03~)II 2 ~(11~11). Hence 

v(t,+) I_ G(N~~B(~~~~~~e"~~"' E dII+II)- We have now proved that G(ID(t)$l) 5 V(t,$)z 

v(lI dl) - One can now take G( ID(t)$l) f u(lD(t)@l ). This verifies a. Since (a) 

12 



holds, for any h > 0 there exists T' such that 

V(t+h,xt+h(tO,O)) = G(ID(t+h+r'jxt+h+T,(tO,~)l )eT' 

Let T = T'+h, then 'c' = T-h and 

V(t+h,xt+h(t0,4)) = G!ID(t+r)xt+T(t0,9)leTeT'-T, 

Hence 

5 V(t,$)e 
T’-T = V(t,$)emh. 

7J(t+h,xt+h(t,$)) - V(t,@) I -V(t,$)[l-e'hl. 

From this we deduce that c(t,$) 5 -V(t,+) 5 -G(.ID(t)$l), verifying (b) or (b') 

with a = 1. 

To show that (c) holds we note that if t,T E [O,tO+T] 

Ivb,tJ1) - v(w,)l 

2 SUP e'llD(t+r)x 
T>o 

t+&$) - D(t+T)Xt+T(t0,02) 1 
- 

< Sup e - 
T>T>O 

T Nllxt+T(tO~Q - Xt+T(t0’$2)jl , 
-_ 

< - sup e' Ne 
T>T>O 

LB(a)Ct+T-tO) II#,-@,JJ , 
-- 

by Lemma 3.1, 

< Ne(L8(a)+l)(t0+2T) 11~ -~ 11 - 12' 

Hence 

v(t d,) - v(t.42) F MIIq-~,11 

where M= NeL(8(d+l)(to+2T) . 

Finally, to prove V(t,@) is continuous in t,Q we observe that 

l~(t+h,~O+~l) - V(t,$,) 1 

1. /V(t+h,$O++l) - V(t+h,xt+h(t.~o+~l))I 

13 



+ IV(t+h,~~+~(t,~~+~~)) - Vh~o+~l)l 

+ Iv(t ,+,+o,) - v(t ,$,I 1 - 

Since V is Lipschitzian, 

jV(t+h,$O+~l) - V(t+h,xt+h(.t,+o+$$)~ 

I kl~xth40+~l) - xt 
h 

(W,+$J,) II- 

Because the solution x(t;to,$) is continuous given any E > 0 there exists 

a g > 0 such that if Ihl< 6 the right hand side of the above inequality is - 

less than E. Also 

Iv(Wo+4$ - V(W,)/ 5 kll4,il< E 

whenever II+lI/ 5 6. Lastly, 

IV(t+h,xt+h(t+$O++l) - v(t '~o+~l )I ( -v(t ,4,+0,) be-hJ 3 

so that if h is arbitrarily small the right hand side of this inequality can be 

made Very small. 

This proves the theorem. 

4. On the Boundedness and Periodicity of Certain Scalar Nonlinear Neutral Equations. 

The applications in this and next sections are the raison d'etre of the 

theory presented in Section 3. The calculations involved are less cumbersome 

than would have been the case if the ideas in [3] were applied. For example, 

the equation in the transmission line problem, namely, 

(9) &[x(t)-qx(t-h)] = -ax(t) - bx(x-h) - vx3(t) + q x3(t-h) + p(t), 

where y > 0, 191 < 1, a,b are constants and p is a w-periodic function, which 

was treated in (3), can now be proved to be uniform ultimately bounded by a 

shorter calculation. Indeed consider V(t,x) = x2 then u(s) = v(s) = s2, so 

that condition (i) of Theorem 1 holds. It remains only to verify condition 

14 
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As in [3], computing the derivative i'(Dxt) we have 

wc(t-h) ) 
D3 

If q = 0, 

? 2 -yD4 if D is large. 

If q # 0. By taking R sufficiently large so that x(t-h)/D < N < 
and 

IDI 2 R we have t < -y 6 D4, where 

)_Eo+a+ 
yD yD2 

(b+qa)x(t-h) 1 2 $ . 

yD3 

We see that condition (ii) holds and since D$ = 4(O) - q$(-h) is uniformly 

stable (9) is uniformly ultimate bounded and hence w-periodic. Observe that 

the existence of an f: [R,m) + E' and its properties are completely unnecessary 

here. 

The generalized Lienard equation, 

(10) ii + g(t,x)G + f(x) = p(t), 

has had an extensive history. For an excellent summary of results up til 1972, 

on the continuability, boundedness, oscillation and periodicity of solutions 

of (lo), see Graef [63. An equation similar to (10) but with history-dependent 

restoring force is the Lienard equation with delay, namely 

(11) g(t) + g(x(t))&) + f(x(t-h) = 0, h > 0. 

The equation (11) was studied by Hale [7‘, Section 311 and Grafton [8] who proved 

the existence of a nontrivial periodic solution, period greater than 2h. 

In this section we shall initiate a study of the Lienard equation of neutral 

type, namely 

(12) z(t) + a?(t-h) + g(t,x(t)+ax(t-h))&(t-h) + f(x+ x(t-h)) 

= p(t,x(t),x(t-h),&t),G(t-h)), 

15 



where h 2 1, 0 < a < 1, or its equivalent 

(13) -&Mt 1 + a(x(t-h)) = y(t) + ay(t-h) 

+ dt-h)) = p(t,x(t),x(t-h),y(tly(t-h)) - f(x+ ax(t-h)) 

- g(t,x(t) + a(x(t-h))y(t-h) 

obtained from (12) on setting 

&4s) = Y(S). 

Define the operator D by D$ = O(O) - A$(-h) f L(t) - A&(t-h) where 

&(S) = xc s) 
Y(S) ’ 

Observe that by Lemma 2.1, D$ is uniformly stable, Indeed the roots of the 

equation 

(14) det[I - Apmh] = 0 

has modulii less than 1. To see this note that (14) is equivalent to 

ph-.+ p = 0. 

Denote Dxt = x(t) + ax(t-h), Dyt = y(t) + ay(t-h) and clearly (13) is the 

same as 

(15) & Dxt = DYt 

2 Dyt = -p(t,x(t),x(t-h)y(t),y(t-h)) - f(Dxt) - g(t,Dxt)DYt 

Theorem 4.1. In (15) assume that p, f and g are continuous in their respective 

arguments, f, g and p take closed and bounded sets into bounded sets. Further 

assume that 

(i) g(t,$) > a > 0 for II+11 LA > 0 

where a,A are positive constants; 
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(ii) f($)sgn Q-t- as l$l -f m; 

(iii) there exists a k > 0 such that Ip(t,x(t),x(t-h),y(t),y(t-h)I 5 k for 

all t,x(t),x(t-h)y(t),y(t-h). Then (15) is ultimately uniformly bounded. 

If in addition p is w-periodic then there exists a w-period solution of (15). 

Proof. Consider the continuous functional 

(16) v=vl+v 2 
where 

Dxt 
(17) 2V1(Xt'Yt) = (DYt)2 + 2 / f(s)ds 

0 

v2 = Dxt sgn Dyt if 1~~~1 ( IDYtl 

= Qvt sgn Dxt if 1~~~1 L 1~~1. 

Evidently 

2v2 L -4DYtI 3 

so that 
Dxt 

(18) 2v,2] 
0 

f(s)ds + (DY,)~ - 21~~4 

for all xt,yt. 

From (18) it is clear that there exists an 5 > 0 such that if IDXJ 2 + IDYtI - %>H 

the right hand side of (18) is positive, and condition (i) of Theorem 3.1 holds. 

Also 
. 
V(15)(~t>~t) = -Wt&,Dxt)Dyt + DYtp, 

from which we deduce that 

(19) t 2 -a(Dyt)2 + k(DYt) 

if I~y,l LA and 

(20) czBlif 

for some constant Bl . Furthermore 
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(21) ii, = IDy,l if 1~~~1 L IDy,I 

if InX,l LIDY,I 
= [-dt,Dxt)DYt - fbxt) + plsgn(Dxt) 
or 

(22) _ c2 < -f(Dxt)sgn(Dxt) + B2 

if lDxtl 2 I~y,l for some B 2 . Combining (19) and (21), we have that whenever 

bxtl 2. b?+ 

(23) 

provide a 

whenever 

so that 

(24) 

t 2 -a(Qyt)2 + (k+l)/DytI 5 -(k+l)lDyt 
. 

2(k+l) 
Dytl ’ [a , Al, Combining (20) 

iT < -f(Dxt)sgn(Dxt) + Bl + B2 - 

Dxtl 1 IDy& bYtI LAY 

and (22) we have 

+ < -B31f(DXt)l - 

for some B3 > 0 provided IDX~/ 1B4. Combining 

(25) t < -(y) jDytj - 2 If(Dxt)l - 

provided 

min 

Because If($) 

satisfied. 

[IDxtl ,IDytll > maby 2(k+l) 
- - , B41. a 

+cu as I$1 + m, (25) shows .-that condition (ii) of Theorem 3.1 is 

Since D(t) is uniformly stable we deduce from Theorem 3.1 that the solutions 

of (15) are un .formly bounded and uniformly ultimate bounded. 

(23) and (24) we deduce that 
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5 . Linear Nonhomogeneous Neutral Equations. We shall study the system of 

neutral equations described by 

(26) -&[x(t)-Cx(t-h)] - Ax(t) = p(t,x(t),x(t-h)) 

where x(s) is an n-vector valued function, C and A are nxn real matrix 

functions, and p is n-vector valued function which is locally Lipschitzian 

in the last two arguments and maps bounded sets into bounded sets. We have 

the following result. 

Theorem 5.1. In (26) suppose C is symmetric and all the roots of the equation 

(i) det[I - Cpmh] = 0 

have modulii less than 1; 

(ii) the eigenvalues Xi of A satisfy Xi < - ho < 0, i=1,2,...,n; 

and those of CAC satisfy pi > p. > 0, i=1,2,3,...,n; and the eigenvalues 

6i of A + CAC satisfy 6i < +So < 0, i=1,2,...,n. 

(iii) The function p satisfies Ip(t,x(t),x(t-h))l c M, for all t,x(t) 

x(t-h). . 

Then the solutions of (26) are uniformly bounded and uniformly ultimately 

bounded. If, in addition, 

(iv) p is w-periodic then there exists a w-periodic solution of (26). 

Proof. It follows from Lemma 2.1 and condition (i) that the operator 

D$I = 4(O) - C$(-h) is uniformly stable. Let 

(27) V($) = (D$,D$) + 1" (CAC+(h$(e))d~, 
-h 

where (* ,*) denotes scalar product in En. With this definition we can take 

u(r) = v(r) = V(r), 

so that condition (i) of Theorem 3.1 is satisfied. Next compute the derivative 
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of v: 

),4(O)) - 2(CAW h$) = (AW,D$) + (A+(O),@(O)) + (CAC$(O 

+ 2D$p(t,+(O),$(-h)). 

(-h) ,$(-h)) 

Hence 

h') = (AW,W) + ((A+cAc)$(o),$~(o)) - 2((CAC)Q(-h),$(-h)) + 2DOp. 

By condition (ii), 

(AW,DQ) ( -holD4j2, 

((A+CAC)$(O) ,4(O)) 1. -Sol@(o) 12, 

-2((CAC)$(-h),$(-h)) ( -2p01$(-h)/2. 

By hypothesis (iii) 

kWdWb),h-h)l ~2MjD$j. 

Hence 

a 5 -~,lDd2 - ~,l~(o)12 - 2no/($-h)12 + 2M/D$j. 

If we now choose 

xO $-JN2 
for sufficiently 

1 - 24 DOI ’ 0, 

large 1~01, that is ID$I 2 R, say, then 

(28) irw ( - >/D$12. 

Since (28) holds, condition (ii) of Theorem 1 is satisfied. It now follows 

that the solutions of (26) are uniformly bounded and uniform ultimate bounaea. 

The existence of a periodic solution follows by Proposition 2.1. 

6. Nonlinear System of Neutral Equations. Consider the nonlinear system of 

ordinary differential equations 

(29) ;: = f(x,t) 

where 
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af. 
x,f are n-vectors. Let fx be the Jacobian matrix (2) and fz its transpose. 

4 
J 

The asymptotic behavior of (29) has been investigated under various assumptions 

on the matrix 

J(x,t) = $[Af, + f;A] 

where A is a positive definite symmetric nxn constant matrix. (See Demidovic [g], 

Ezeilo [lo] and 1111). In this section we shall study the system 

(30) $x(t)-Cx(t-h)] = f(t,x(t),x(t-h)) 

in which C is an nxn real constant matrix, x(s) and f are n-vectors; f maps 

bounded sets into bounded sets and it has continuous partial derivative in the 

last two arguments. In (30) let Da, a = 1,2,3 be symmetric nxn matrices 

$tdaij + daji) 

where 
af. 

d lij 
= 1 (.t ,4(O) ,4(-h)) 

aojW 

afi 
d2ij = a$j(-h) (t,O,$(-h)) 

d 
afi 

3ij = - (t,@(O) 30) aej(o) 

Let 

Ja 
= ADa + DZA, i=1,2,3 

where A is a positive definite symmetric nxn constant matrix. We shall prove 

the boundedness of solutions of (30) under certain restrictions on Ja. Let 

D$ = $(O) - C@(-h). Then (30) is equivalent to the system 

(31) ~[Dol = f(t,4(0),4(-h)). 

We assume that D is a uniformly stable operator. 
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Theorem 6.1. In (30), suppose C is symmetric and all the roots of the equation 

det[I - cyhl = 0 

have modulii less than 1. Let A be a real positive definite symmetric nxn- 

Constant matrix such that the eigenvalues Xli of the matrix J 1 
satisfy 

(i) Xli~-61< 0, I$(o)l LR, [4(-h)/ LR, 

A,; IA,, (0 < A, < a), I$(O)l (R, I&-h)/ L R, 
II I 

for all t 10; and 

(ii) the eigenvalues X4i of the matrix -JIC, where C is in (30) satisfy 

‘hi < 44 < 0, I@(o)1 2 R, 1$(-h) 1 L.R> 

X4i < A43 (0 < A4 < m) I4dO)l LR, I+(-h)l 1R. 

Furthermore, 

(iii) IIJ211 1. A2, for all t and 4(-h), //-J3Cl/ 2 A3, for all t ma 4(o), 

where the constants 6 l,64,A2,A3 are such that 

(32) 
364 5 

a3- a = - - -j=$# > 0, 

-5 2 
a3 --g- 1. a2 3 

where a2 - $/C/I - (A~+A~). 

(iv) Suppose also that If(t,O,O)l( M, for all t. Then the solutions of (30) 

are unfiromly bounded and uniform ultimate bounded. If in addition f is W- 

periodic there exists a nontrivial w-periodic solution of (30). 

Remark. In (iii), 1) -11 a enotes matrix norm. 

The proof of the Theorem rests on the following Lemma, a version of which 

proved very useful in Ezeilo [lo] and Chukwu 1121. 

Lemma 3. Let g: E1xEnxEn -f En be a function such that g(t,#(O),$(-h) and aigio) , 
3 
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12 ij 2 n are continuous in t, @J(O), and 4(-h). Suppose there is a constant 

M such that -0) < M, and the characteristic roots of the matrix 

agi 
3amj(o) + 

363. 
sop)' 

satisfy 

vk 5 M, k=l,...,n 

uniformly in the arguments. Then the scalar product g defined by 

G = k(t;~(0)+4ih,0b-h)) - dt;$(O),$(-h),h) 

satisfies 

g zMlh12 for all t. 

Proof of Theorem. Consider the function V defined by 

(32) V(4) = (AD+&), 

where D$ = 4(O) - C$(-h) and (.,a ) denotes the inner product in E?. Since A 

is positive definite V is obviously a positive definite quadratic form in Do. 

In fact there are positive finite constants n17n2 such that 

(33) nl-lD$12 L V($) L n21D$12- 

Take u = n2/D$j2, v = nllD$12 in condition (i) of Theorem 3.1. Xow compute the 
. 

derivative V (30)(@) 
and note that A is symmetric: 

ir(,$) = (Af(t,$(O),$(-h&D+) + (AQ,f(t,Q(O),0(-h)) 

= 2(Af~t,~(O),~(-h)),D~) 

= 2b%t,~(O) ,4(--h)) ,~(O)-C&-h)) 

= 2(Af(t,o(O>,~(-h)),~(O)) + 2(Af( t ,c$(o) 34 (-h),-C@ (-h)) 

E Nl + N 2 . 

Now 

Nl = 2Ul + 2U2 + 2U 
3' 

where 
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U1 = (Af(t,$(O),$(-h)) - Af(t,O,$(-h))&(O)) 

U2 = (Af(t,O,$(-h)) - Af(t,O,O),$(O)) 

U3 = (Af(t,O,O) ,4(O)) - 

Also 

N2 = 2u4 + 2u5 + 2U6 

where 

U4 = (Af(t,+(O),d-h))- Af(t,~(O),O),-C~(-h)> 

U5 = (Af(t,$(O),O) - Af(t,O,O) ,-WC-h)) 

55 = (Af(+- ,o,o) ,-Cd-h) ) 

By applying Lemma 3 to Ui, i=1,2,4,5, we deduce that 

5 
Ul = (Jl$(0),$b)) 5 - ,/$(0)/2 + B, 

u4 
“4 

= b-JIC&h)&h)) 2 - ,I&h)j2 + B4, 

for all $(0),$(-h) and t, where Bl,B4 depend only on ?il,64,A1,A4 ana R appearing 

in (i) and (ii). Also by (iii) 

U2 = (J2&h),0(0)) I A2( I+(O)/ 196-h) 1) 

U5 = bJ3C&h),~(0)) (A3(j$b)1 I+(-h)l). 

Because A and C are constant matrices and f(t,O,O) is bounded, 

u3 1. 631 do) 19 

u6 ( ~&$6-h) 1 > 

where 6 
3 

and 6 6 depend only on A, C, and M in (iv). 

On gathering all these estimates we obtain 

I2 + (A2+A3)()d0 (34) 
5 2 "4 

+(d 2 - -$9(O)l - 21$(-h) 

+ 631$(0)j + 6& 
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The first three terms on the right hand side of this inequality can be recast 

in the form 

-aolbOl12 - a,19(0)12 - 2a21$(o)ll~ 

- bum/" "4 - ~l&-h)I 

where 

11 W iI2 = [l+(O)l-l/Cll 10(-h)j12 

aa 
5 % 

ao=-g-, al=8 

c-h) 1 - a31 4(-h 

a2 = $-llcll - (A2+a3) 

364 % 
a3 = 8 - -@ II2 

I2 

Observe that a0 > 0, al > 0. Also by (iii), a3 > 0 and ala3 2 a: . Hence 

5 &4 ir(+) 5 -a,[lDQI I2 - -g-l@(0)12 - 810 b-h)1 + 631$(o)l + $-l&h)l 

+ 8, + B2. 

Hence for j+(o)/ and lO( large, say, I+(O) 1 2 R, Id-h) 1 ) R, 

Condition (ii) of Theorem 1 is met. Since D is uniformly stable the theorem 

follows. 
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III. Boundedness of Ordinary and Hereditary Systems of Lurie Type 

1. Introduction 

In the problem of Lurie 

(i> ;r = Ax + bf(a), 

5 = ctx - rf(a), 

where A is an n x n constant matrix whose characteristic roots have 

negative real parts, x, b and c are n-vectors and o, f and r are scalars, 

one tries to find a necessary and sufficient conditions for the absolute 

stability of (i). One major approach deals with showing that a certain 

Liapunov function, whose existence is guaranteed by the uniform asymptotic 

stability of the equation 

(ii) ii = Ax, 

is positive definite with negative definite derivatives with respect to 

(i). This then yields conditions for bounded solutions to be uniformly 

asymptotically stable. In this procedure, independent arguments are needed 

to show that solutions are bounded. [13]. In a more recent paper Burton[l4] 

took the significant step of attacking the problem of boundedness directly 

and independently of the Lurie problem. When f(o)/0 + 0 as 101 + co he 

obtains necessary and sufficient conditions for all solutions of (i) to 

be uniformly ultimately bounded. 

In this chapter we consider plant equations of more general types, say 

nonlinear ordinary differential equations, nonlinear functional equations 

of retarded and neutral types. We assume that the uncontrolled system is 

uniform-bounded and uniform ultimate bounded and then use the inverse 

theorems ensuring the existence of Liapunov functionals for the controlled 

system, ([151, [ll, and Chapter II) and obtain sufficient conditions for the 

uniform boundedness and uniform ultimate boundedness of the feedback system. 
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2. Notations, Definitions and Preliminary Results. -- 

The following notations will be used in this paper: En denotes the 

Euclidean n-space and the norm of any XE En is written as 1x1. For any 

h>O, Cdenotes the space of continuous functions mapping [-h,O] into En 

with the sup norm denoted by II*II. F or any continuous function 

x(e) 9- h 2 @IA, A>0 and fixed t, Olt LA, xt denotes the function 

x,(8) = x(t+e), -h 2 8 5 0. 

Let tOEE, and g be a continuous function taking IX, I = [tom] into 

En. Assume that g is linear in 4 and that there exists an n x n matrix 

function p(t,e) t&I Oe [-h,O] which is of bounded variation in 8 and 

there exists a scalar function a(@, continuous and non-decreasing for 

s E [O,h], P.(O)=0 such that 
0 

(1) g(t,$> = / [dev(t,e>l$(e> 
-h 

0 
1 1 [d,dt,e)l+(e)l 5 a(s) supldde) 

-S -s<e<o -- 

for all t&I, $E C. 

Define a functional differential operator 

D(O): IX -f En, 

by 

(2) D(t)‘+’ = t’(O) - g(t,@), tE I, $E C. 

We shall study the following differential equations: 

(3) 
dx - = A(t,x) dt 

(4) 
dx 
t = A(t,x) + bf(a) , 

(5) 

da = B(t x) dt ' - rf(a> ; 

; 

(6) 
dx - = C(t,xt) + bf(a) , dt 
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dcr - = E(t,xt) - rf(a) ; dt 

and 

(7) $ (D(t)xt) = F(t,xt) ; 

(8) 5 (J.Wxt) = F(t,xt) + bf(d, 

do 
- = G(t,D(t)xt) - rf(o). dt 

Here A is a continuous function from IxC-tEyF is a continuous function 

from IxC+En. Both A and F are Lipschitzian in their second arguments 

respectively. Also x, b EEn; f, r and 0 are scalars. B is a continuous 

scalar function from IxEn+E1, E: IXC-fEl, and G: IxEn+E 1 . D is as defined 

in (2). 

We now define the boundedness concepts we need for the different systems. 

Definition 2.1. (i) The solutions x(t ,x0) of (3) are said to be 

uniform-bounded, if for any ~00, there exists a B(cx) such that if Ix,~~cx 

we have jx(t,xo)( < B(o) for all t 1 to. - 

(ii) The solutions x(t,x,) of (3) are said to be uniform-ultimate-bounded 

for bound B, if there exists a positive constant B and for any cPO there 

exists a T(o) such that if 1x1 <~1 we have Ix(t,x,)l < B for all t > t - - _ O+T(W. 

Here x(t,x,) denotes the solution of (3) with x(t,,x,) = x0. In the same 

way one can define the same concepts for the functional differential 

equation (7). We shall denote the solution of (5) or (7) byx(tO,@) if 

xt (t ,4) = 4, the initial function $ is assumed to belong in C. 
0 O 

For example, the solutions of (7) are uniform-bounded if for any 

CUO there exists a B(a) such that if 11~11~ CX, we have Ib,(t,,@)// 2 B(cY) 

for all t>tO. 

In Cruz and Hale 153 the concept of a uniformly stable operator was 
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introduced and was shown to imply the following: 

Definition 2.2. The operator D in (2) is uniformly stable if there are 

constants i3 , -0 such that the solution x(t,,@) of the "difference 

equation" 

D(t)xt = 0, t2to 

Xt = 4, W,>$=O, 

satisfies /lxy(tO,$)/l 5 g!L-o(t-tO)l~~~~, 

for all tlto. 

If V: IxC+E is continuous we define the "derivative" t(t,Q) along 

solutions of (7), say, as 

V(t,$) = $(7)(t,@) = lim 
h-f0 

; [v(t,x ,+&-,,~>)-V(t,~>l 

Definition. We say F(t,x)E CO(t,x) if for any compact set 2 CElxEn , 

there exists a constant K(s ) such that, for any pair of points (t,x)s S , 

(t',x')e %! , we have 

lF(t,x) - F(t ',x1>/ 5 K[lt-tlj + /x-x11] 

where K is independent of t and may depend on x. 

Moreover, we shall say that F(t,x)eCO(x) if for any compact set 

2 CE", there exists a constant K(Eh,t) such that for any pair of points 

1 2 K/x-x11. 

say 

x,2 , x12 , 
IF(t,x) - F(t,x') 

If K is independent of t we 

F(t,x) E: c,(x) 

The following converse theorems are reproduced from [15], [l], and Chapter II. 

Theorem 2.1. Consider the system (3) in which AE Co(x). If the solutions 

of (3) are uniform bounded and uniform ultimate-bounded for bound B', there 
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exists a Liapunov function V(t,x) defined on I, lbjj 2 R, R>O such that 

(0 a(lxl> 5 V(t,x> 5 b<lxl>, for 1x1 2 R, tE I, 

where a(r) is continuous increasing a(r)>0 for r>R and a(r)* as ~-tco; 

b(r) is continuous increasing, b(r)* as r-tea; 

(ii) i(t,x> 5 -cV(t,x>, 00, 

with R>B1. 

(iii) If A is bounded for 1x1 bounded, and if AECO(X) then V(t,x)E 

Cg(t,x) with Lipschitz constant M. 

Theorem 2.2. [l] In (5) assume that for any ~90 there exists an L(t,cl)>O 

such that if [/~I\~ ~1, we have 

(9) IF(t,dd 1 2 L(t,d 

where L(t,a) is continuous in t; and that F(t,Q) &co(@). Let S be the 

set of @EC such that ll~ll~ H, where H is a positive constant which may 

be large. 

If the solutions of (5) are uniform-bounded and uniform ultimate 

bounded there exists a continuous Liapunov functional V(t,$) on IxS which 

satisfies 

(9 a(ll$ll) F V(t,@) I b(ll@II), 

where a(r) is continuous, increasing, positive for r>H and a(r)- as r-f03, 

b(r) is continuous and increasing, 

(ii> i(5) (t,$> 1. cxV(t,@), S-0, 

e a constant 

(iii> V(t,@> E?~(@). 

Theorem 2.3. (Chapter II). Consider the system (7) where F(t,$) is locally 

Lipschitzian in 4, and where the uniformly stable operator D satisIies 

ID(t)@\ 2 fill~ll, for all t ~1, 
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4 EC with K the Lipschitz constant for F. If the solutions of (7) are 

uniform-bounded and uniform ultimate-bounded, there exists a continuous 

Liapunov functional V(t,$) on 1% which satisfies the following conditions 

(i> u(lD(t)@l) L vct,a> ( v(lkll) 
for all t &I, 4 EC, where u(r) > 0 for r 2 H and a(r)- as +; v(r) is 

continuous increasing and v(r)+= as r-tco; 

(ii> V(t,$> 5 -w(lD(t)$l> 

or 

(ii) V(t,$) 2 -oV(t,@), C00 

(iii) V is locally Lipschitzian, i.e. for any 6 ,l' $2 E: C,ts [O,tO+T] there 

exists some M(T) such that 

Iv(t,q - V(t,42)l 2 Ml141 - 4211, if Il~iII 5 r, some r. 

Remark. In the above theorems if the relevant functions are assumed to 

be Lipschitzian i.e., for example, for each x, xl~En 

IF(t,x) - F(t,x')l f. Klx-xl\ 

then the Liapunov functionals produced are also Lipschitzian but the 

Lipschitz constant M may be dependent on t. Throughout what follows we 

shall denote the Lipschitz constant by M. 

Define the set S as follows 

S = -&$E C: ll@ll~ H, H may be large.1 

We now reproduce the following theorem from Chapter II which we shall need. 

Theorem 2.4. Suppose there exists a continuous functional V: [tOm]xS 

such that: 

(i) u([D(t>@l> 5 vet,+> 5 v<I[c,IIL 

where u(r) is continuous increasing positive for r>H and u(r)- as r)o3, 

and v(r) is continuous and increasing; 
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where (G(r) is continuous and positive for r>H. 

If D(t) is uniformly stable then the solutions of (7) are uniform- 

bounded and uniform ultimate bounded. 

Sufficient conditions for ultimate boundedness were earlier given 

by Lopes [3] in terms of the so called Liapunov-Razumikhin functions. The 

conditions are far from necessary and the treatment is not complete. 

3. Boundedness Theorems. 

Theorem 3.1. Consider the uncontrolled ordinary differential equation 

(3), and the controlled system (4), where A, B, c, b, f,, and r are 

identified in Section 2, and where it is assumed that A and C and f 

Lipschitzian in o, A is bounded for 1x1 bounded. Suppose that the solutions 

of (3) are uniform-bounded and uniform ultimate bounded . Let a, c, M be 

given by Theorem 2.1. Assume that 
u 

(i) / f(s)ds + m as 101 + ~0, 
0 

f(O)=O, of(a)>0 if a#O; 

(ii) The scalar function C(t,x> is continuous in x and t and is such 

that 

IC(t,x) I 1. a(lxl>, 
where a is given by Theorem 2.1 

(iii) Suppose the constants C>O, M>O given be Theorem 2.1 satisfy 

4cr > (Mlbl + 1)2 

Then the controlled system (4) is uniform bounded and uniform ultimate 

bounded. 

Proof. Let V(t,x) be the Liapunov function guaranteed for I/XII 1 R by 
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Theorem 2.1, and let c be its derivative along solutions of (4). Then 

; 5 -cV + Mjbf(o)l . 

Define 

v2 u w=2 
+ I f(s) ds- 

Because of the properties of V, obviously there exists functions a(r) 

and c(r) with properties as indicated in condition (i) of Theorem 2.1 

such that 

:(1x1) + jof(s)ds FW(x,a> Ib(lxl>' + /of(s)ds 
0 0 

Because of condition (i) of Theorem 3.1, condition A and B of Yoshizawa's' 

Theorem 7 [3 p 861 are satisfied for the function W. 

The derivative of W along solutions of (4) satisfies 

;J < -cv2 - - rIf(a>12 + VMlblIf(o)I + lf(o)llc(t,x)l 

On using hypothesis (ii), we obtain 

W( -cV2 + V(M(bl + l)lf(a)( - r(f(o)12 

The condition (iv) makes this quadratic form in V and If(o)1 negative 

definite for 1x1 2 R. Hence, property (C) of Theorem 7 in D] is also 

satisfied. It follows from Theorem 3 and Theorem 7 of [Is] that the 

solutions of (4) are uniform-bounded and uniform ultimate bounded. 

Remark. The 'function W was inspired by a recent paper of Somolinos [Ir;] on 

the absolute stability of the system (5). 

Theorem 3.2. Consider the nonlinear functional differential equation (6) 

where F, E, f, b, r are identified in Section 2. Assume that the functions 

F, E and f are Lipschitzian in xt, and U respectively. Suppose that three 

functions satisfy conditions similar to (9) in Theorem 2.2. Assume that 

the uncontrolled system (5) is uniform-bounded and uniform ultimate 

bounded. Let a, o! and M be as determined by Theorem 2.2. Assume that 
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(i) f(O) = 0, af(o) > 0, of 0; 

I' f(s)ds + 03 as Ial + 0~; 
0 

(ii) IE(t,@) 5 a(ll$II>, h w ere a(r) is continuous, increasing positive 

for r>H and a(r) + O" as r -t m ; 

(iii) 4cxr > (Mlbl + 1)2. 

Then the solutions of the feedback system is uniformly bounded and 

uniform ultimate bounded. 

Theorem 3.2 is proved in theesame way as Theorem 3.1 is proved. 

One uses Theorem 2.2 to obtain a Liapunov functional V. The function 
2 u 

W = f + / f(s)ds 
0 

has the required properties of V in Theorem 1 in [l]. This Theorem of 

Yoshizawa now ensures that the solutions of (6) are uniform-bounded and 

uniform-ultimate-bounded. 

Theorem 3.3. Consider the system (8), where the uniformly stable operator 

D satisfies 

(DW+l 5 NIbII 

for all tE I, @EC, where K is the Lipschitz constant for F. The functions 

F(t,$), f(u), g(t,D(t)@) are Lipschitzian in @, U and D(t)@ , respectively. 

Suppose the system (7) is uniform-bounded and uniform-ultimate-bounded. 

Let u, ~1 and M be as given by Theorem 2.3. Assume that 

(i) f(O)=0 uf(u)>O u#O, /'f(s)ds" as lol-m; 
0 

(ii) Ig(t,D(t)@)l 5 ulD(t)@l for all tE I, $E C 

where u(r) is continuous, increasing positive for r>H and u(r)- as rto~; 

the relation 

(iii) 4ar > [ 
_Mlbl+1 2 l-a(e) 1 
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holds for all 8 E[O,h]. 

Then the solutions of the feed back system (8) are uniform-bounded and 

Uniform-ultimate bounded. 

Proof. Since solutions of (7) are uniform-bounded and uniform-ultimate 

bounded, Theorem 2.3 guarantees the existence of a Liapunov functional V 

on 1%. Differentiating V along solutions of (8) we deduce that 

(10) %I 
(t,$,) + M lim 

h-t0 
+ [y,+#,@ - Xt+h(t'@)l 

where x = x(t,@),,y = y(t,$) are solutions of (7) and (8) respectively. 

Also, 
t+h 

D(t+h) (Y~+~-x~+~) = I bf(o)ds, 
t 

for any h>O. - Since g(t,@) satisfies (1) there is a ho>0 such that 

Iv t+h - Xt+h 1 5 ' /t+hbf(u)ds 
l-JXho) t 

for 0 < hzho. - On using (lo), one obtains 

(11) +,w 1. ~(7)w) + 
M 

1-R (hoI lbfb) 1, 

for all t 2 to 4 EC. Hence, 

(12) 
M 

',b,@ 5 -av(t,$> + l-R(ho) b(u)). 

Now define 
T. 2 U w++ I f(s)ds. 

0 

Differentiate W with respect to t along solutions of (8) to obtain 

rlf(o)j2 + l-zh ) Ibf(')l 
0 

+ If(u) 1 jG(t;D(tht) 1 

< -av2 - - rlf(a>12 + V [g+gJ+ q lfb>l* 
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where we have used hypothesis (ii). Thus 

' 5 -" 
2 + 1 1 I - rlf(cO 12- 

This quadratic function in V and If(o) 1 is negative definite because of 

condition (iii). It is simple to verify that W satisfies conditions 

(i)-(ii) of Theorem 2.4. Because D is uniformly stable, the operator 5 

defined by - 

DXt = I 1 D(t)xt 9 
U 

where D(t) is given in (2) and x and 0 are as above, is uniformly stable. 
t 

It follows now that the equation (8) is uniform-bounded and uniform 

ultimate bounded. 
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IV. Absolute Stability of Neutral Functional Differential Equation 
of Lurie T&e 

1. Introduction. 

Consider a system of real ordinary differential equations 

(1) dx - = Ax + bf(o) dt 

do T 
dt=CX - rf(a> 

in which f: (-xJ,~) -f (-x-,w) is sectionally continuous with of (u)>O for 

~$0, f(O)=O, A is an n x n matrix, c and b are constant n-vectors and r 

is a scalar. The problem of Lurie consists of finding a necessary and 

sufficient condition for every solution (o(t),x(t)) of (1) to tend to 

(0,O) as t- whenever it is assumed that the uncontrolled equation 

(2) 

is uniformly asymptotically stable in the large (cf [17, p 91). The 

entire monograph by Lefschetz was devoted to this problem. Recently, 

Somolinos [z] has generalized this problem of Lurie to functional 

differential equation of retarded type. In this chapter we shall treat 

the problem of Lurie when the system is described by functional differ- 

ential equation of neutral type. We shall assume that the uncontrolled 

system is uniformly asymptotically stable. Utilizing a Theorem of Cruz 

and Hale in [5] which ensures the existence of a Liapunov functional, 

we then obtain conditions for the uniform asymptotic stability of the 

feedback system. 
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2. Notations and Preliminary Results. 

Let En be a real n-dimensional Euclidean vector space with norm I=/. 

Let h>O be a given real number. Let C be the space C([-h,O],E") of - 

continous functions taking [-h,O] into En with II$II,.~~c defined by 

II$I! = sup{j$(O)l: -h (0 5 0). For any continuous function x(o) on 

-h 5 0 2 tl, tl>O and a fixed t, 0 5 t 5 tl, xt denotes the function 

~~(0) = x(t+O), -h < 0 < 0. Let D(O): [to,=) X C + En be a continuous - - 

function defined by 

(3) D(t)@ = Q(O) - g(t,$), for t E [tO,m)EI,$& C, 

where g: [to,oD> X C -+ En, 

is continuous, g(t,$) is linear in $ and is given by 

(4) s(t,$> = 1; [dsi-dt,s>ltW. 

The function p(t,s) is an n x n matrix t& I, SE [-h,O], with 

elements of bounded variation in s which satisfy the following condition: 

(5) I 1: [dsu(t,s>14(s> 1 2 ~03 supj@(r> 1, 
-O<r<O -- 

for all tE1, $s C, where R is continuous nondecreasing for @E [O,h], a(O)=0 

Let A: IxC -+ En be continuous and consider the equation 

(6) +(t)x,) = AL+, 

Xt 0 
= 0, toE: I. 

The following theorem ensures the existence of a Liapunov functional when 

(6) is uniformly asymptotically stable. 

Theorem 2.1 [5]. Let D(t) and A(t,=) be bounded linear operators from C 

into E n such that for some constant L>O, for all $e C, for all t>t - 0' 

lD(t)d I #'II. 
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If (6) is uniformly asymptotically stable, then there exist positive 

constants M, c1 and a continuous scalar function V on I XC such that 

(7) (i) ID(t)@1 5 V(t,@) (MII@II, 

(ii) +(t,Q> ( -aV(t,@), 

(iii> IV(t,@>-V(t,$> 5 Klb-$11, 

for all t 2 to, $, $EC: G is the usual upper right hand derivate along t 

solutions of (6). 

In Theorem 2.1 it is assumed that D(t) and A(t,=) are linear. 

However, Cruz and Hale [5] stated a similar result when A(t,@) is not 

linear in $I, but g(t,@) in (3) satisfies 

lg(t,@> ( LII@II, for all tlto. 

We now state the result and point out the required lemma needed 

to carry out the proof in [5]. It was communicated to the author by 

Professor J. K. Hale. 

Theorem 2.2. Let A(t,O) = 0, and let A(t,$) be uniformly locally 

Lipschitzian in $I uniformly with respect to t, with Lipschitz constant N. 

Let D satisfy locally the condition: 

b(t)44 5 w44IY 
for all tlto, for some K. 

Assume that the null solution of (6) is uniformly asymptotically 

stable. Then there exists a So > 0, a M = M(SO) > 0, positive definite 

functions b(u), c(u), on 0 5 u 5 So and a scalar function V(t,@) defined 

and continuous for TV I%, II@11 I_ So such that 

(a> (D(t)@1 5 v(t,@) i b(lbll) 

(b) ;T(t,$) 2 -c(lD(t)Gl) 

he 
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(cl Iw ,a$> - V(td2)l 5 Mb, - @211 

for all t 2 to, 91, e2E C, j4iII 5 So, i=l,2. The condition (b) can be 

replaced by 

(b') h@ 5 -W(t ,$I, PO. 

Remark. The problem with the proof of Theorem 7.2 in [5] is contained 

in verifying (c). The following lemma is needed. 

Lemma. (Hale) In (6) assume that D satisfies the conditions of Theorem 2.2. 

Then for any r. 0, there is a constant L=L(rO) such that 

Ix,(t,,~,> - x,(t,,@,)ll 5 eLctBtO) lb1 - +,A 

Ilqto4) II F y)’ 

Remark. The proof is not as easy as for retarded equations since one cannot 

apply the Gronwall inequality directly one must take small steps in time and 

make careful estimates using the properties of D(t). 

To prove Theorem'2.2, set 

c(t,$> = suplD(t+s)xtts(to,@> le s(t) , 
s>o - 

and proceed as in page 310 of Hale PSI. Our lemma replaces the inequality 

on page 310, bottom line. 

The first case considered is the indirect control system 

(8) $ (D(t$) = Ah+) + bf(o), tzt,, 

5 = B(t,D(t)xt) - rf(u), 

XtO 
= e, toE I, 

40 



in which A is as above, C(t,y) is a scaler continuous function in tl0, 

Y E& and f is a scalar function which is continuous, 

Definition. The operator D in (3) is uniformly stable if there are 

constants CX>O, 8 > 0 such that the solution of the "difference equation” 

D(t)xt = 0 , 

Xt = 9 , 
0 

D(t,>@ = 0 , 

satisfies jjx,Ij 5 Be-"(t-tO)ll~l~, t>tO. 

3. Main Theorems. 

Theorem 3.1. Assume that in (8) the uncontrolled system (6) is 

uniformly asymptotically stable. Let a, and K be as given by Theorem 2.1. 

Assume that A(t;) and D(t) are bounded linear operators from C into En 

such that ID(t)@/ 5 MII$II for all t 2 to, $E C. Assume that: 

(i) I0 f(s)ds + 00, as 101 + 00; 
0 

there exists a positive constant c such that 

(ii> IB(t,D(t)@)l 1. c(lD(t)$l), 

for all t&I, @EC; 

(iii) for all k[O,h] the relation 

.2 
4ar> 

holds where R is defined in (5); 

(iv> the operator D is uniformly stable. 

Then (8) is uniformly asymptotically stable. 
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Proof. Since (6) is uniformly asymptotically stable, there exists a 

Liapunov functional for (6) given by Theorem 2.1. Let t(8) denote the 

derivative of V along the solutions of (8). Let y = y(tO,$), x=.x(tO,$) 

be the solutions of (8) and (6) respectively, then the relations (7) 

imply that 

(9) 

But then 
t+h 

D(t+W (Yt+fxt+h) = / bf(a)ds, 
t 

for any h>O. Since g satisfies (5) we have that there exists an ho>0 

such that 

IY t+h-xt+h 1 5 l$ho) jtfhbf(cJ) Ids, 
t 

for 0 5 h 5 ho. We now use this inequality in (9) to obtain 

(10) +,b) 5 $6) ct ,@> + 
K 

1-R (ho) Ibf(dl. 

Hence, by (7(ii)) 
K 

i8(ts@) 2 -av + l-2(ho) Ibf(d I. 

2 0 
Define W = $+ 1, f(s)ds. 

The derivative of W along the solutions of (8) satisfies 

fi < -av2 - - rlf(@12 + V Ibf(d I)+ If<a>Cl. 

By conditions (ii) of Theorem 3.1 and (i) of Theorem 2.1 we obtain from 

this that 

The right hand side of (11) is a quadratic form in V and If(o)]. It is 

obviously negative definite by condition (iii). Hence, there exists a 
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positive number y such that 

6 5 -y(V2 + lf(a>12> 

From this it follows that 

so that the second condition of (4.2) in Theorem 4.1 of Cruz-Hale [5] is 

met for the Liapunov function W. Trivially, also all the other conditions 

in (4.2) are satisfied. Because D is a uniformly stable operator the 

operator D- given by 

D-Q = ‘b(O) - i(t,$), 

is uniformly stable. Therefore, by Theorem 4.1 of [5] the system 

$ mt>gt> = idLEt,) 

is uniformly asymptotically stable. 

Here 

D-W, = 

i&Y,) = 
-i B(t,D(t)xt) - rf(o) -: 

The proof is complete. 

Theorem 3.2. Consider (8), and assume that A(t,O) = 0, A(t,$) is locally 

Lipschitzian in $I uniformly with respect to t, and the operator D satisfies 

ID(t)01 5 MIb[, 

locally in @EC, for all t>t -0 and some M. Assume that D is uniformly 

stable and that (6) is uniformly asymptotically stable. Let K and 8 be 

as given by Theorem 2.2 and assume that 
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(i) For all 8 E [O,hJ the relation 

holds where R is defined in (5), and where c is a constant such that 

(ii> I B(t,D(t)@) I 2 clD(t)$l, 
for alltE1, @EC: 

(iii) /o f(s)ds + 00, as IuI -f 03. 
0 

Then there exists a 60>0, such that for any E, 0 < E < 8, and any t&O, 

there is a 6=6(c) such that I/Q// < 6 implies ljxt(to,$)II < E for all 

t& [tom], and for any n>O, 0 5 n ( 60, there exists a T(n)>O, such that 

Il@II 5 6, implies Ibt(to,@>ll ( T), if tl to + T(q). In other words all 

solutions in the ball S(S0) c C are uniformly asymptotically stable. 

Proof. The hypotheses of the theorem imply there is a Liapunov functional 

V satisfying the conditions of Theorem 2.2. Choose do as in Theorem 2.2. 

Let c(8) denote the derivative .of V along solutions of (8). If 

y = Y(t,A>, x =dtoA) are the solutions of (8) and (6) respectively, 

then, as before, 

G8(t,@) 5 ‘6(t9$) + i-g:h ) o bf(dl, 

provided lldlr 60. Our using 
2 

W = $- + 1' f(s)ds, 
0 

one easily verifies that the conditons of Theorem 4.1 of [5] are satisfied 

for W, provided Ikll 5 do. By the cited Theorem the trivial solutions of 

(8) is uniformly asymptotically stable when confined to the ball S(S,) C_ C. 
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Consider the direct control case: 

(12) & (DCt>x,> = A(t,xt) + bf(a), 

U = cTD(t)xt, 

XtO = @ 

where the letters are there defined above and cTb = -r<O. 

Theorem 3.3. Assume that D(t) and A(t;) are bounded linear operators from C 

into En, such that 

lD(m4 5 LI~II 
for all t 1 to, @EC, and 

(13) IACt,+) 1 5 aID(t) z-0. 

Suppose (6) is uniformly asymptotically stable and 

(i) f(0) = 0, of(o)>0 o#O, f continuous and 

Au f(s)ds + c=, as loI + 03. 

(ii) Let a and K be given by Theorem 2.1 and let the relation 

(14) 
4ar > j+j-$- 

( S + alcl) 2 , 

hold for all s E[O,h], where R is defined in (5). 

Then (12) is uniformly asymptotically stable. 

Proof. Proceed as before, using Theorem 2.1 to obtian a Liapunov 

functional V for the system 6. Differentiating V along solutions of 

(12) yields 

Set 

+12) (t,$> ~V(6)(t,$) + $ho) lbllf(u)I- 

+ j" f(s)ds. 
0 
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Then 

dbf@O 1 
;(12) 5 -aV2 - rlf(a> I2 + l-R(ho) 

+ If(o)lIcT A(t,xt)l 

< -aV2 - rlf(o)l 2 
- 

+ V 
[ 
+J-$!-) + alcl If(o)I 

0 I 

where we have used (13) and the property of V. We now use (14) to 

deduce the result as before. 
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V. Functional Inclusipn and Controllability of Nonlinear Functional --- -___ 
Differential Systems 

1. Introduction. 

In this chapter we formulate sufficient conditions for the existence of a 

solution of a nonlinear differential inclusion of neutral type, 

Y$ D(t.xt) &R&x& (1) 

where D is a continuous operator on IXC, linear in x t, indeed of the form (4) 

below, and R(*; ) denotes a set valued mappin Q of IxC into the set of non- 

empty closed convex subsets of En. The solution is required to satisfy an 

initial and terminal condition 

xto = +,, Xtl = $3 

where ~O,$,E C, C a function space. The theory includes functional differential 

inclusions with delay, treated in [191 and ordinary differential inclusions 

treated in 1201 It is related to the existence result in 1211. Our proof 

uses the Fan fixed point theorem in [22]. 

As a consequence of the existence result, we present sufficient conditions 

for the exact function space controllability of the nonlinear neutral control 

system 

f$ D(t,xt) = f(t,xt,u), u(t) E Q(t,x$. 

We give explicit conditions on D, f and Q which guarantee exact controllability 

between two fixed functions. The equation (3) includes those studied by Cruz 

and Hale in [5]. They are general enough to include systems of the form 

x(t) - 
i=l 

Ai(.t)X(t-hi) = ~ B(t)X(t-hi) 
i=l 

+ g(t,x(t-hi),'**,x(t-~),u) 

Our work in controllability generalizes the treatment in [lg] and [201. Our 

view-point is different from the recent investigations in [23] by Jacobs and 

Langenhop of the system 
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i(t) = Amlx(t-h) + Aox + Alx(t-h) + Bu(t). 

Their studies are more algebraic and their controls are unrestricted. 

2. Definitions and Notations. 

Let En be a real n-dimensional Euclidean vector space with norm I*[. 

Let h ) 0 be a given real number. We shall denote by C the space C([-h,O],En) 

of continuous functions taking [-h,O] into En with II$II, 0 EC, defined by 

II+4 = -hs<uPo +(e) * Also 1: will denote the space C([tO,tl],En), and I will 
-- 

represent the interval [t,,t,]. If x: [t -h,t ] + En, 0 1 h > 0, then for tc I the 

symbol x t denotes the function on [-h,O] defined by x,(B) = x(t+B), f3 c [-h,O]. 

Let G denote an open subset of IxC and let D: G + En be a given continuous 

function. We shall be interested in the differential inclusion 

withx =4,X =+ 
t0 O 5 

1, O,,O, E C, where D(t,+) is linear in 4 and is given by 

D(t,$) = 1' [d$t,s)]$(s). (4) 
-h 

The function A(t,s) is an nxn matrix with elements of bounded variation in 

s E [-h,O] which satisfy the following c ondition 

B(t) = A(t,O) - A(t,O-), det B(t) # 0, 

11' [d$t,s) l+(s) - B(t)@(O) 
-h 

(5) 

(t,$) c G, where B(t) is continuous and y(t,h) is continuous for t E [tO,m), 

h > 0, y(t,O) = 0. - The mapping R above is set-valued and maps IxC into the set 

of nonempty closed and convex subsets of En. A function x is said to be a 

solution of (1) if x E C([t,-h,tl],En) (t, xt) EG and x satisfies (1) on I. 
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In this definition it is D(t,x,) and not x(t) which is continuously differ- 

entiable on I. .For 0 EC we say x(t,+) is a solution of (1) through (to,+,) 

if x(t,$) is a solution of (1) on [tO-h,tll and xt 
0 

(to,Oo) = $o. 

We shall present sufficient conditions which guarantee the existence of 

a solution of (1) which satisfigthe boundary values (2). We shall then apply 

this to study the controllability of the system 

& D(t+ = f(t,Xt,U), U(t)En(t,X& (6) 

where f is continuous in all its arguments, and D is given in (It) and satisfies 

(5). A function x is said to be a solution of (6) through (tO,+O) if x(tO,eO,u) 

is a solution of (6) on [to-h,tl] and xt (t ,@ ,u) = 9,. Note that x is a 
0 O O 

solution of (6) through (t0,40) if and only if x satisfies the equation 

D(t,x$ = D(t,,$,) + lt f(s,x&))ds, tcI, 
t0 

xto = $0' 

(7) 

(8) 

For the results in the existence of solutions of neutral functional differential 

equations defined by (6) and (4), see [24]-[25]. 

PJe now introduce the following notations. Let m(t) LO, t 1(tLt2bea 

given scalar function, m ~L~([t~,t~],El) and let g be the set of all continuous 

functions x: [to-h,t,] + En such that xt 
0 

= $,, xt 
1 

= @,, where $,,$,E C, and 

such that D(t,x t ), t c I is continuously differentiable and have derivatives 

satisfying 

1% D(t,xt) 1 I m(t) a.e. on I. (9) 

Let Cp be a compact ball in C of radius p. For sufficiently large p, Cp can be 

chosen nonempty. 
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3. Existence of Solutions. 

In this section, we give sufficient condition on R to ensure the existence 

of a solution of the initial value problem (1) and (2). 

eorem .l. Consider the generalized boundary value problem 

& D(t,xt) sR(t,xt) on I, (10) 

XtO = @OY Xtl = @Y 

$l,$, EC where D is defined in (4) and satisfies(5); and has ker D(t,.) = {O); 

and R denotes a set-valued mapping of IXC into the set of nonempty compact con- 

vex subsets of En. Suppose R possesses the following properties: 

(i) R is upper semicontinuous with respect to inclusion; that is, for 

every B > 0 there exist A., 1 i=1,2, such that the inequalities, 

1 t-q < Q llx,-x~ll < 5’ 

imply R(t,xt)G UB, where Ug is the closed B-neighborhood of R(r,x$. 

(ii) The relation 
L 

holds for all x EC . 
P 

(iii) For each measurable y(t) satisfyin g the inclusion y(t) s R(t,xt), 

where x(t) EC 
P' 

we have 

/y(t)/ (m(t) a.e. on I, with maLl(I,E1). 

Then the generalized boundary value problem has at least one solution xs C 
P' 

The following set-valued map @ on C 
P 

is needed in the proof of Theorem 3.1 

and is defined by 

Q(Y) = (2 6Cp: 2 D(t,+ R(t,y,), ts1). 
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Note that z EC 
P 

implies that Z~E: C. The next two lemmas are crucial in our 

proof. 

Lemma 3.1. Assume conditions (ii) and (iii). IfYEC 
P' 

then Q(y) is non- 

empty and convex-valued. 

Proof of Lemma 3.1. The convexity of Q(y) follows from those of C and R(t,yt) 
P 

and the linearity of D(t,yt) on yt. Now let YE C 
P' 

then from condition (ii), 

there exists a measurable function (3 such that o(t) sR(t,yt) a.e. on I, such 

that 
5 

D(tpt$ = D(t,,+,) + 1 a(s)ds. 

t0 

For some zt E C, with max{lz(s)l : to-h 2 s zt,) up, set 

D(t,zt) = D(to,Qo) + I’ u(s)ds, 
t0 

and note that 

5 D(t ,z,) = u(t) &R(t,yt) a.e. on I. 

Because y EC 
P' and a(t) ~R(t,y~) 

I& D(t,zt) 1 = Iu(t)l 5 m(t), 

by condition (iii). Also 

5 
D(tl,zt 

1 
) = D(tO,$O) + I 

t0 
u(s)ds = D(t,,+ 

so that z 
5 

= 9,, since ker D(t,*) = (0). Similarly 

D(tO,zt 
0 

) = D(tO+$O), 

so that 

.z =I$. 
t0 O 
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Hence z EC 
P' 

so that z E o(y), and Q(y) is nonempty. This proves the Lemma. 

Lemma 3.2. Assume that the conditions of Theorem 3.1 are satisfied. Then 0 

defined in (11) has a closed graph; that is, suppose {y"}& Cp and assume 

zn E O(y”) for n=1,2,--0. If zn + z E Cp and yn + ys C then 
P 

ZEO(Y). 

Proof of Lemma 3.2. Because zn E@(yn) 

k D(t,z;) &,y;), tE 1. 

Since y: EC 
P' 

by condition (iii), 

I$t,zz)l 5 m(t), 

where msLl(I,E1). From the above 

IDh,z;) - D(tO,@O)l ( it 

and t0 

1 D(t,z;) - D&z;) 1 ( it 

inequality we deduce that 

ds)ds, 

m(s)ds. 

So that 

I $s,zi)ds + 0 when i -+ m, 
E i 

uniformly with respect to n for each decreasing sequence {Ei), EiGI, with void 

intersection. Therefore (see [27], p. 292), there is a sequence (we retain 

the same notation) weakly convergent in Ll(I,En) to a function <EL~(I,E"). 

Then for each TV I, 

D(t,zt) = lim D(t,zt) = lim [D(tO,+o) + It &,zz)ds 
n- n- t0 

= D(to.$o) + jt c(s)ds. 
t0 
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It now' follows from page 422 of [WI that there is a sequence {r;,) of con- 
k+l 

vex combinations of the function {6(t,zk),6(t,zt ),*..> converging in Ll(I,En) 

norm to 5. From this sequence I<,} select a subsequence which converges to 

5 a.e. Thus almost everywhere on I, 

c(t) E fi ;o( 9 ;(t,z;))c fi ;O(o R(t,y;)GR(t,y$, 
k=l n=k k=l n=k 

where co(M) is the closed convex hull of ME". Hence 

(12) 

and 0 has a closed graph. The argument given here is completely analogous to 

that in [281 and [291. The Lemma may also be proved by using the reasoning 

in [191 in this case we need only assume that R is closed valued and not 

necessarily compact. Note that we used the upper semicontinuity of R in (l2). 

We now reproduce the Fan fixed point theorem of [221 on which our proof 

of Theorem 3.1 rests. 

Proposition 3.1. Let L be a locally convex topological linear space and k a 

compact convex set in L. Let W(k) be the family of all closed convex (nonempty) 

subsets of k. Then for any upper semicontinuous point-to-set transformation f 

from k into W(k), there exists a point X~E k such that x0 E f(xo). Here upper 

semicontinuity means that limit x =x n o, y,~ f(x,) and limit y, = y. implies 

Y. Ef(XO). 

Proof of Theorem 3.1. Observe that the set of all continuous functions on 

[to-h,tl] into E n equipped with the sup norm is a locally convex topological 

linear space and that C Also @ 
P 

is a chosen compact convex subset of this. 

defined in (11) is a mapping of C 
P 

into the set of subsets of Cp which has a 

closed graph and is upper semicontinuous with respect to set inclusion. Since 
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Cp is compact and Q has closed values, Q(y) is compact for y&C . Since 
P' 

Cp and R(t,yt) are convex and D(t,yt) is linear in yt, cp is convex-valued. 

APply Proposition 3.1 to deduce a fixed point X'E @(x0); that is x0 EC 
P' 

& D(t,x,O) sR(t,x;), xz 
0 

7 $,, x; 
1 

= 9,. The function x0 is the desired 

solution. 

4. Controllability. 

In this section, we apPly the existence theorems for Section 3 to study 

the controllability of nonlinear neutral functional differential systems: 

-$ D(t,xt) = f(t,xt,u) on I, (l-3) 

where D: IXC + En is continuous and linear in x t and, as assumed in (5): atomic 

at 0. We shall assume as basic that the ker D(t,*) is (0). Also the function f 

in (l3) is a mapping f: IxCxEm + En which is continuous in all its arguments. 

The control set is a multi-function R: IXC + Em with values .Q(t,@) nonempty, 

compact subsets of EU, which is upper semicontinuous with respect to set in- 

clusion. Let 'ii;(R) be the set of all measurable selections u: I + Em with 

u(t) E Q(t,xt) for each t E I. It is well-known that 1$(Q) # QJ' (see [30], 

P. 398). The system (B) is controllable if given @,,4,s C, there exists a 

u E j!,(s) such that the solution x(t,$,,u) of (l.3) passing through (to,$O) 

satisfies x 
5 

(-Ao,u) = 9,* The next result states a sufficient condition for 

(13) to be controlled from one function to another. 

Theorem 4.1. Let $J~,+,E C. (i) Assume that the set 

R(t,@) = {f(t,O,u): UEi?,(t,4), t EI, @EC) 

is convex. Furthermore, assume that (ii) the relation 

(14) 

D(-+61) - D(t,,0,) E / 
c 

R(s,xs)ds, 
LO 
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holds for all x E C . Also 
P 

(iii) If(t,xt,u)l < m(t), mELl(I,E1), fo:' each t EI, - XEC~ and uER(t,$). 

Then there exists a u E 'iii(C) such that the solution x(t,tO,$O,u) of (l3) satisfies 

Xt (~,tO,~O,U) 
0 

= 4,, Xt 
1 

(=,to~~odd = 4l 

Proof of Theorem 4.1. Because f is continuous and R is upper semicontinuous 

with respect to set inclusion and has compact values, R is upper semicontinuous 

and has compact values. By (i) R is convex. Condition (ii) is the same as (ii) 

in Theorem 3.1 for R defined in @4). Condition (iii) here implies hypothesis 

(iii) of Theorem 3.1. Since all the conditions of Theorem 3.1 are satisfied 

the existence of a solution x of the generalized boundary value problem 

2 D(t,xt) E R(t,xt) on I, (15) 

xto = @OY xtl = $1' 
(16) 

follows from the theorem. It remains to verify that every solution of (15) that 

in addition satisfies (16) can be viewed as a trajectory of (13) with (16) holding. 

That this is the case follows from the well-known ideas of Filippov[31] 

which were extended to cover our situation by McShane and Warfield [32]. 

This result in [32] was later applied in a way similar to us by Angel1 in 

r331. The existence of a UE?ii(fi) which generates x(t; tO,$O,u) such that 

Q-6) holds is now established. 

Corollary 4.1. Consider the system 

G(t)-Al&t-h) = Blx(t) + B2x(t-h) + Cu, 

where the coefficient matrices are constants and the operator D$ = 4(O)-Al@(-h) 

has (0) as kernel. Let the set Q(t)s-Lc be closed and convex and upper semi- 
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continuous with respect to inclusion, where iL is compact. Let O,,O, E C, 

and assume that 

(i) qo) - e,(O) + Aloo - Al+l(-h) ER, 

where 
t, 

.) + m(s) Ids. 

Then there exists a u E 3j!(Q) such that the solution x(t) of (I?> satisfies (6). 

I 

R=j 

t0 
{Blx(s) + B2x(s-h 

Remark. The controllability of the system (l7) was recently investigated by 

Jacobs and Langenhop in [23]. It was assumed there in [23] that the control 

set is unrestrained. 

The author is very grateful to Professor L. Cesari whose numerous suggestions 

led to a considerable improvement of this chapter. 
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VI. Controllability of Delay Systems with Restrained Controls 

I. Introduction. 

Consider the control system 

G(t) = L(t,xt) + K(t,u), tit,, 

(1) 
x(t) = 4 +? tE [tC-h,tC], 

where L(t,@) is continuous in t, linear in Cp and is given explicitly by 

' L(t,e) = : A WWt,) 
k=l k 

+ / A(t,S>@(E>dE , (2) 
--r 

where each Ak(t), A(t,c) are continuous n x n matrix functions for -m<t,c<m 

O<tk, -c<h. - It is assumed as basic that K(t,u) is continuous in t and U. 

Numerous contributions have been made on the controllability of (1) when 

power available in (1) are unlimited and the controls are allowed to be any 

square integerable functions on [tom] with values in Em. In [34]-[37] function 

space controllability was investigated, while in [38], Euclidean space con- 

trollability was studied. 

The purpose of this paper is to consider both the Euclidean and the 

function space controllability of (1) when the available control power is 

limited and the controls have values restricted to compact and convex subsets 

of a Euclidean space, E . The unifying theme of the present chapter is the 

introduction of a growth condition which for systems without delay was exten- 

sively used in [39]-[41]. A system is asymptotically proper if, and only if it 

possesses this growth condition. In the appropriate space a system is asympto- 

tically proper if and only if it is controllable. As a consequence, we show 

that under rather mild conditions, the system (1) is controllable if, and only 

if its perturbations are controllable. 
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The controls are square integrable with values in P, a compact convex 

subset of Em. The state of the system is either En or the function space W2 (1) . 

It is sometimes convenient to use the larger space C=([-h,O],En) of continuous 

function from [-h,O] -f En. 

2. Preliminaries. 

Let En be a real n-dimensional Euclidean vector space with norm 1.1. Let 

h>O be a given real number. We shall use W2 (1) to denote the Sobolev space - 

w2 
(1) ([-h,O],E") of functions whose derivatives are square integrable. This 

space is a Hilbert space with inner product defined by 

0 
(x,Y> q (x(-h),y(-h))En + / (G(t),$(t))Pn dt 

-h 

for x,y EW 2 (')([-h,O],?), where (=,*), n denotes the inner product in En. 

Let h>O be given. If x: [to-h,tl] En then for t& [t,,t,] the symbol xt 

denotes the function on [-h,O] defined by x,(e) = x(t+e) , @s[-h,O]. Let P 

be a closed bounded convex subset of Em and let 

IP = {u: uEL2([t0,tll,P) 

Set I q [tOtl]. Throughout what follows the constraint set P could be replaced 

be a sphere or cubic in Em, or the family {P(t): t&I of closed convex sets 

in Em which are contained in a sphere in Em. 

In the last case, 

IP = {u: uEL2([t0,tl],Em) u(t)E P(t)). 

We shall assume in the sequel that the L in equation (1) satisfies the 

following condition: 

ILL@) / 5 act> II+II, t E [to"), 4 E c 

where R is such that 
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t+h 
I 
t 

R(s)ds 5 R1, t E [to,">, 

R1 a constant. We shall also assume that K(t,u) is continuous in t and u&U?. 

Under the above assumptions the solution of (1) is given by 
t 

, x(t;t,,@,u) = x(t;t,,$,O) + / U(t,s)K(s,u(s))ds, t>t -0 
tO 

(3) 

Xt = 0 
4 in [to-h,tO]. 

Where U satisfies the equation 

k uct,s> = L(t,U$,s) _ tkcLi 

LJ(t,s> = 0 
l 

s-h < t < s - 
I t = s 

if U,(~,s)(~> = U(t+O,s) -hWO we can write the solution as follows __ 

Xt(tod#bu>(e> = ~,(todho>(e)+ jt U$,s)(9)K(s,u(s))ds 
tO 

(4) 

(5) 

t>t _ o 8 E w-b01 ; or9 

x,(t,~~yu) = xt(t()~@~O) + lt u (.,s)K(s u(s))&. 

t0 t 
, 

Throughout the paper, the initial function Q(e):0 8 ~[t~-h,t~], so that, since 

xt(tO,@,O) is linear in 4, (see page 82 of Ref 9) 
t 

X,(t,,@,u) = I U$,s)K(s,u(s))ds. 
tO 

(6) 

In Euclidean space the solution is 

x(t,to,Od = Jt U(t,sk(s,u(s))ds 
tO 

(7) 

Definition. The Euclidean reachable set of (1) at time t is the subset of En 

given by 

IR(t,tO) = {It U(t,s)K(s,u(s))ds: UEIP] 
tO 
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The reachable set is 

IR(tO) = w IR(t,tO). 
Et0 

Definition. The system (1) is Euclidean controllable if, and only if lR(tO)=En. 

Equivalently, (1) is Euclidean controllable if and only if for each xl"En, 

there exists a time t >t 1- o and a control u&P such that the solution x(t,tO,O,u) 

of (1) satisfies x(tl;tO,O,u) = x1. 

Definition. The function space reachable set of (1) at time t is the subset 

of w2(1) given by 

mt,to) =( up ,s)k(s,u(s))ds: u-1 . 

tO 

The function space reachable set is 

at,> = u c(t ,t,> 
t>to - 

The system (1) is function space controllable if, and only if 

C(t,> = w2(? 
Equivalently, (1) is function space controllable if for every IJIEW~ (1) there 

exists tlztO and a control UEP such that the solution x(t;tO,O,u) of (1) 

satisfies 

Xt 
1 

(*,to,O,u) = 9. 

Definition. Consider the linear system 

k(t) = L(t,xt) (8) 

where L is defined in (2). 

Definition. The trivial solution of (8) is called stable at to if t&O and 

(i) there exists b=b(tO)>O such that if I$IILb then the solution x(t,,$) 

of (8) exists for t>t -0 and x,(t,,$) is in the domain of definition of 

L for t2to. 
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(ii) For every 00 there is a 6=&(t0,s)>0 such that if II#I~cs then the 

solution x(t,,$) of (8) satisfies I]x,(t,,$)/ 5~ for all tlto. 

The trivial solution of (8) is called stable if it is stable for every t&O. 

It is called uniformly stable if it is stable and the 6 above does not depend 

upon t 0' 

Lemma 2.1. (Ref 9 p 91) The trivial solution of (8) is uniformly stable if 

and only if there is a constant M>O such that 

IW,d I 5 M, t>s>O. _ _ 

Remark. This implies that 

b,('s) 11 2 M, 

if (8) is uniformly stable. 

The next result and its Hilbert space analogue are crucial in our 

investigation. 

Lemma 2.2. Let S be a convex set in En containing the- origin with the property: 

given any number s , and any non-zero vector n&E n , there is a vector YES, 

such that nty 1 E. Then S = En. 

For its proof, see [39, page 71. We now generalize it in Lemma 2.3. 

Lermna 2.3. Let S be a non empty closed convex subset of a Hilbert space H, 

with the following property: for each s>O and each non-zero vector n EH, there 

exists a ysS such that (n,y)>&. Then S=H. Here (=, l ) denotes inner product 

in H. 

Proof. Suppose S # H, then there is a non-zero vector 1-1 E H such that p k S 

and such that in 

flls - pII= d > 0 

se5 
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for some d. It follows from the discussions on page 49 of [42] that p and 

S can be strongly separated by a hyperplane. Consider the point x ES which is 

closest to l-l. Such a point exists by [42, page 101 corollary 1.4-l. Set 

then v&H, and for any XE S 

(x,v> 5 (lJ,v> - l/u - h/l. 

Hence, (x,v) is bounded above for any x ES, a contradiction, hence S=H. 

Remark 2.1. The following two statements are equivalent: 

(i) given any number E>O and any non-zero vector n EEn, there is a 

vector of y&KC_ En such that rlty 2 E 

(ii) given any number E >O 

GS,, 

where S is an E-ball in En. E 

Remark 2.2. The following are equivalent: 

(i) given E >O and any non-zero DEW2 (1) there is a vector y&K2W2 (1) 

such that (rl,y) 1 & 

(ii) given any number E '0 

where S E is an e-ball in W (1) 
2 . 

The next definition generalizes the same concept by LaSalle in [39] for non 

delay systems. 

Definition. The system (1) is asymptotically proper in W2 (1) if for each 00 

and each non-zero vector D &W2 (1) there exists a control UE~R, a time tl 1 to 

such that 

(17, / 
5 u (*,s)K(s)u(s) as> ' E. - 

tO 5 
(9) 
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where (-, l ) denotes inner product in W2 (1) . 

The system is asymptotically proper in En if W2 (1) is replaced by En and 

(9) is replaced by 

U(tl,s)K(s,u(s))ds L s. (10) 
tO 

In section 4, we shall show that function space controllability is equivalent 

to systems being asymptotically proper when the system (8) is uniformly stable 

and K satisfies some convexity assumptions. 

3. On the Closure and Convexity of Reachable Sets in W2 (1) and En. 

Theorem 3.1. In (1) assume that 

(i> there exists an N>O such that 

IK(s,u(s)) 1 5 NI~u~I; u EP, s E Iz[tO,tll, for each I 5 El; 

(ii> the set, 

lK(t) = (K(t,u(t)): UEIP), 

is convex for each tEE 1 ; 

(iii) the trivial solution of the homogeneous system (8) is uniformly 

stable. 

Then the function space reachable set c(tl,tO) of (1) at time tl is closed 

and convex in W 21((-h,01 J"). 

Proof. Because P is compact and I [to, 1 t ] bounded,lP is a bounded subset of 

L20,Em). The setlP is also closed in L2(I,EM). Indeed, consider a sequence 

{u; which converges to an element u in L2(I,Em). Then by Theorem 6 p 122 of 

1271 uk converges to u in measure, so that a subsequence ukn converges to u 

almost everywhere (See p 150 of [27] Corollary 13). Since P is closed in 

Em,u(t) is an element of P a.e in I. Since u differs by a null function from 

an element ofIP, uEIP. 
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Because P is assumed convex so isIP , so that by Theorem 13 p 422 of [27] 

lP is weakly-closed in L2(I,Em). Since L2(I,Em) is reflexive we have 

from Corellary 8 p 425 of [27] thatlP is weakly-compact in L2(I,Em). 

% Let T(u)(') = j U (',s)K(s,u(s))ds, 

tO ? 

be a mapping of L2(I,Em) into W2 (1). 

Observe that 

Since U is linear andlK(t) convex, c(t,,t,) is convex. We now prove that T 

is continuous, and hence weakly continuous (see 1271, Corollary 5 p 420). 

Indeed 

< 7’ l$(=,s)II IK(s,dd)lds. - 
tO 

Because (8) is uniformly stable we have by Lemma 2.1 that 

for some m0 and all s E[t O’tll. Hence by condition (i) of Theorem 3.1 

lb(u) 11 5 m 2; IIu<s> Ids. 

By Hb;lder inequality, 

IITW II i NM Jt,-t,/full, , so 

that T is continuous. Because T is weakly continuous, andIP weakly compact 

in W2(l), and so weakly closed. 

Since c(t,, o t ) is both convex and weakly closed, it follows from Theorem 13 

p 422 of [27] that G(tl,tO) is closed in W2(l). This completes the proof. 
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Remark. If K(t,O) = 0, OE P then 0 sG(t,to) for each t2to and &(t,) is 

nonempty and convex. 

Proposition 3.1. In (1) assume that K(t,O) = 0, OsP then the Euclidean 

reachable setlR(t,tO) of (1) at time t is nonempty, and convex. Also, the 

Euclidean reachable setlR(tO) of (1) is nonempty and convex. 

Proof. Because O&P and K(t,O)=O. OEIR(t,tO) for each tzto. Since also 

Nt,tO) 5 R(t2,tO) to 3, I.5 OEIR(to). Recall that 

IR(t,tO) = i / U(t,s)K(s,u(s))ds: us:Ip) 

tO 
t 

= / U(t,s)q(s)ds: q(s) measurable, q(s) 6 K(s,P)), 
tO 

so that the convexity of lR(t,tO) follows from a well-known theorem (see[43] 

Theorem 3 or 144, Theorem 11). Since 

TR(tO) = w TR(t,tOL OEmt,tO) 
tit 0 

for each t andIR(t,tO) CIR(t ,t,> for tl - 2 < t IR(tO) is also convex. This 

completes the proof. 

4. Controllability. 

This section contains the basic results of this chapter from which other 

results are deduced in the next sections. 

Theorem 4.1. In (1) assume that: 

(i) there exists an NrO such that 

IK(t,U(t>>l 5 ~llull, UEP, tE I, for each I-[tO,tl]; 

(ii) the set 

IX(t) = iK(t,u(t)): UEIP) 

Is convex for each t& El; 

65 



(iii) the trivial solution of the homogeneous system (8) is uniformly 

stable. 

Then (1) is function space controllable if, and only if it is asymptotically 

(1) proper in W2 . 

Proof. The conditions of the theorem yield that the function space reachable 

set G(t l,tO) is a closed and convex subset of W2 (l). (S ee Theorem 3.1), for 

each t12to. Assume that (1) is asymptotically proper in W2 (1) . Then for 

each 00 and each non-zero vector QZW (1) 
2 there exists a control uEIP; a time 

tllto such that 

5 (T / Utl( l ,s)K(s,u(s))ds) 1 E. 
tO 

Since yEc(tO) is the same as there exists a tlztO a UEIP such that 

y = u (*,s)K(s,u(s))ds, 

tO 5 

our assumption that (1) be asymptotically proper 5s equivalent to: for each 

00 and each n E W2 (1) , there exists a tllto and a ys C(t l,tO) such that 

bl,Y) 2 E* 

It follows from Lemma 2.3 that there exists a tllto such that 

w2 (l) = G(t,,t,) ; 

that is, W2 (1) = ato) - 

For necessity, let 00, n EWE (l), and choose $I E W (') 12 to satisfy 

h@l) 1 E. 

Let tllto, UEIP be such that 

Xt 
1 

(0 ,to,O,u) = 9,. 

then 

I 5 U (*,s)K(s,u(s))ds = 0,; 

tO 5 
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and 

ol, I 5 U$,s)K(s,u(s))ds) 1 E. 
tO 

The proof is complete. 

Corollary 4.1. Consider the system 

k(t) = L(t,x$ + B(t)u(t), uclP (11) 

where B is continuous, and L is given by (2). Suppose the trivial solution of 

(8) is uniformly stable. Then (11) is function space controllable if, and 

only if (11) is asymptotically proper in W 2 
(11, 

Proof. Since P is convex, 

SK(t) = {B(t)P) is convex. 

Condition (i) is also satisfied: take N to be the uniform bound of B(t) on 

each compact interval I. The 'corollary now follows from Theorem 4.1. 

Theorem 4.2. In (1) assume that K(t,O) = 0, and OE P. Then (1) is Euclidean 

controllable if, and only if (1) is asymptotically proper in En. 

Proof. By the hypothesis and Proposition 3.11E(t,t0),IR(t0) are both convex and 

nonempty. 

For sufficiency, assume that (1) is asymptotically proper in En. Then 

for each s>O and each n EE", there exists a control uclP a time tllto such that 

t 
qt 1' U(tl,s)K(s,u(s))ds 2 E. 

tO 

that is, for each E>O and each ucEn, there exists a tllto, and yelX(tl,to) such 

that 

By Lemma 2.2, we have that there exists a t >t l- 0' such that 
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En = IR(tl, to> ; 

that is, 

E n = u lR(t,tO) = lR(tO). 
t>t -0 

For necessity, let 00, to &En and choose xl~En to satisfy 

h,) 2 E. 

Let tllto, uCIP be selected such that x(t l;tOJO,U) = X1' 

Then 
L1 / U(tl,s)K(s,u(s)%' = x1' 

tO 

and 

that is (1) is asymptotically proper in En. This completes the proof. 

5. Perturbed System. 

Let - 

G;(t) = L(t,xt) + g(t,u), (12) 

be a perturbation of the system (1): 

x(t) = L(t,x$ + K(t,u). (13) 

Suppose g is continuous in t and u. If our system represents a physical process 

that involves approximated parameters, the next results give conditions under 

which the system can be assumed to be controllable. 

Theorem 5.1. In (12) and (13) assume that g satisfies the following conditions 

on K: 

(i) there exists an N>O such that 

IK(t,u(t)) 1 5 Nllull, u&p, t E I, 

for each If[tO,tl]; 
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(ii) the set 

K(t) = {K(t,u(t)): u&lP) 

is convex for each tsI; 

(iii) Suppose the trivial solution of the homogeneous system (8) is 

uniformly stable; 

(iv) Let h be a function defined by 

h(t) = supjkJtl(*,t) Illg(t,u)-K(t,u) I, tlLtLto 
USP 

and assume that h is integrable on [tom). 

Then (13) is function space controllable if, and only if (12) is function 

space controllable. 

Proof. Define 

Ihj = ;, h(s)ds, 

and let E>O and q ~14~ (1) be given. If (12) is function space controllable, 

then there exists a u&lp and a t>t -0 such that 

(rl, j U$,s)g(s,u(s))ds) 2 E + Ip;ljllhl. 
tO 

Hence, 
t 

(1, / U$ ,s>K(s,u(s>>ds) 
to t 

= b-l, 1 Ut(*,dg(s,u(s))W c 
t t 

- ((T-I, 1 U$,s)g(s,uW)W - (rl, / u,,(‘,s>K(s,u(s>>ds>> 
tO tO 

1 (II, It Ut(= ,s)g(s,u(s))ds) 
tO 

- lh It U,(=,s) [gs,u(s)) - K(s,u(s))lds)t, 
tO 
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It follows from Theorem 4.1 that (13) is function space controllable. We can 

prove the converse in the same way. This completes the proof. 

Theorem 5.2. In (12) and (13) assume that K(t,O) = g(t,O) = 0 and that O&P. 

Let h be a function defined by 

h(t,s) = sup [U(t,s>l Ig(s,u) - K(s,u)/ t>s>tO -- 
U&P 

and assume that h is integrable in s E [to, ~0) for each tls then (12) is 

Euclidean controllable if, and only if (13) is Euclidean controllable. 

Proof. Define 

lhj = Irn h(m,s)ds, 

and let E>O n EE" be given. Suppose (12) is Euclidean controllable then there 

exists a u&II? and a t>t -0 such that 
t 

2 / U(t,s>g( s,u(s))ds 2 E + II-II lhl. 
tO 

Proceed as in the proof of Theorem 5.1 to complete the proof. 

6. Euclidean Controllability of Perturbed Systems 

In this section we examine the Euclidean controllability of the nonlinear 

delay system 

g(t) = Lb+ + K(t,u) + g(t+d, tlto, (14) 

x(t) f 0, ++t& [to-h,tO], 

which is a perturbation of (1). We assume as basic that L and K are as given 

in the previous sections and that g is continuous in all its arguments and 

g(&@,O) = 0, for all tEE', $EW (1) 
2 * We assume that for each t>s the function - 

LJ(t,s>g(s,$,u> is integrably bounded; that is, there exists a function m(S) which 

is integrable in [tom) such that IU(t,s>g(s,+,u)l 5 m(s), for all t>s I$E w (1) 
2 , U&IF. 
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For systems without delay, this problem was investigated in [45] We 

now utilize the necessary and sufficient condition in Section 4 and the same 

approach as in [45] to deduce our result. For a similar investigation where 

the controls are assumed continuous and unrestrained see the recent paper by 

Dauer in [46] for a special case of (14). 

Theorem 6.1. Assume that g(t,@,u) in (14) satisfies a local Lipschitz 

condition in QE C and that 

(i) U(t,s)g(s,@,u) is integrably bounded ; 

(ii) the set 

fK(t,u) + g(t,$,u>: UEIP), 

is convex for all t>t _ 0, $E c; 

(iii) K(t,O) = g(t,@,O) = 0, O&I!? 

Then (14) is Euclidean controllable if, and only if (1) is Euclidean 

controllable. 

The next Lemma is needed in our proof of Theorem 6.1. 

Lemma 6.1. Assume that (1) is Euclidean controllable and U(t,s)g(s,@,u) 

integerably bounded. Suppose K(t,O)=O, @ZIP. Let xl& En. Then there exists 

a time tllto such that: for any $,EC, t& [tO,tl]X, there exists a control 

UC-D, such that the solution $ of 

x(t) = T&,x& + K(t,u) + g(t,Qu(t)), 

x(t) 5 0, for tE [to-h,tO], 

satisfies $(tl) = xl. 

Proof. Because U(t,s)g(s,@gu(s))ds in integrably bounded there exists an N>O 

such that 
t 

1 1 U(t,s)g(s,4s,u(s))dsI LN 
tO 
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for all tlto $S~C, s &[tO,tll and ucll'. 

It follows from Remark 2.1, Lemma 2.2 and Theorem 4.2 that we can choose 

a time tlLto so large that if E = 2N+r, where rLIx,l, then 

mR(tl,tO) =c / 
5 U(tl,s)K(s,u(s))ds: UEIPI _3 SE. 

tO 

It follows from the convexity oflR(tl,tO) that 

Xl& {I 
5 

U(tl,dK(s,u(s))ds + g(w#y(s))ds: U&El, 

tO 

for every $ts C, t ~1. Hence for every $tc C, t&I there exists a control 

u&lP such that 

x1 = It1 u(tl,s)K(s,u(s>)ds + g(s,Qds>)ds, 
tO 

= Jl(t,), 

where $ is the indicated solution. This completes the proof. 

Proof of Theorem 6.1. Suppose (1) is not Euclidean controllable, then by 

Theorem 4.2; (1) is not asymptotically proper. Hence, there exists a E>O, 

a vector n#O, ntcEn such that 

n / 
5 

U(t,s)K(s,u))ds 2 E, 
tO 

for all t>to and all u&D'. Since U(t,s)g(s,@,u) is integrably bounded, there 

exists an N such that 
t 

n j U(t,s)g(s,$,u(s))ds " N, 
tO 

for all tlto, UEJP, and 4 EC. 

Now choose any xl~E", such that 

nxl > E + N. 
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If there exists a uEIP such that the solution $(t) = Jt(t;tO,O,u) of (14) 

satisfies $(tl) = xl, for some tl, then 

x1 = jtl U(t,s)[K(s,u(s)) + g(s,$s,u(s>)lds, 
tO 

andnxl (E+N, a contradiction of the way x 1 was chosen. Hence, there does 

not exist such a UEIP, and a t 1 with the indicated property. This implies that 

(14) is not Euclidean controllable. 

The remainder of the proof is analogous (with slight modification) to the 

proof of Theorem 2.1 pages 259-261 of [45]. We shall only outline it. Assume 

(14) is Euclidean controllable and fix xlsE". Let tlztO be given by Lemma 6.1. 

Then given any QOcC, there exists a control uOEIT? such that the solution $ of 

G(t) = L(t+) + K(t,uoW + dt,~,,u,(t)) t>t _ o 

x(t) 0 v t& [to-h,tO] 

satisfies $(tl) = xl. This solution is ,given by 

$it> = It U(t,d[K(s,uo(s)) + g(s,@O,uWHds. 
tO 

Let 

(15) 

YQ,) = f$J: UE P, ?J given by (15), Q(t1) = xl] 

Then \Y is defined on C. 

From Lemma 6.1, y($,), $OEC is non empty. 

Because K and g are continuous and P compact and because U(t,s)g(s,$,u) 

is integrably bounded 'Y(4) is bounded for each @EC. It is also a convex set 

for each @I&C, because of condition (ii) of Theorem 6.1. The arguments cited in 

r453 carry through to show that '? has a closed graph; that is, if ($i],{$i] 

are two sequences of continuous functions such that 
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'i EY(@~), for each i, then 

JI Em. 

Let IEf denote the colsure of the range of Y on C, thenlM 5 C, and IM is 

bounded. Because K and g are continuous on a compact set and therefore 

bounded, IN is equicontinuous and thus by Ascolis Theorem compact. We have 

now shown that 

\Y: M + W(lM), W(lM) is family of closed convex (non empty) subsets 

of IM, and that \Y is an upper semi continuous mapping. 

The result now follows as a consequence of the following Lemma. 

Lemma 6.2. [46, Theorem 11 

Let C be a locally convex topological linear space and let M be a compact 

convex set in C. Let W(IM) be the family of all closed convex (non empty) subsets 

of M. Then for any upper semicontinuous point-to-set transformation'y from 

IM into W(N) there exists a point @ETM such $eY($). Here upper semicontinuity 

means that 

limit Qn = $, One Y($,> and 

limit 0 = Q. implies a0 EY(JIO). n 
7. Function Space Controllability of Perturbed Systems. 

In Ref. 3, it was proved that the system 

x(t) = A(t)x + B(t)x(t-h) + C(t)u(t>, on I, 

x(t) = Q(t), v t E [tO-h,tOl, 

is function space controllable on I=[tO,T] T>tO+h, if and only if 

k(t) = A(t)x + B(t)x(t-h) + C(t)u(t) + g(u(t)), 

x(t) = $(t> 'dt~ [to-h,tOl, 
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is function space controllable, provided g is bounded. It was also proved that 

if (16) is function space controllable then so is the system 

;c(t) = A(t)x(t) + B(t)x(t-h) + C(t)u(t) + g(t,x(t),x(t-h) 

provided g is continuous, locally Lipschitzian in x(t), and x(t-h), and bounded. 

The controls were taken in L2([t o,T],En) and are not restricted to a compact 

convex subset of En. 

Our aim in this section is to show that when the controls are restricted 

to a compact and convex subset of En, with suitable assumptions, integrably 

bounded perturbations (14) of function space controllable systems (1) are function 

space controllable. That there are critical differences between controllability 

with restraints on the control values and that without such restrictions have 

been pointed out in [45]. The basic assumptions on L, K, and g is Section 

6 are maintained. Our method of proof is similar to that of Section 6. Through 

the solution states are in W 2 (1), we shall work in the larger space C=C([-h,O],En> 

when applying Fan Fixed point Theorem of [22]. 

Theorem 7.1.- In (14), assume that g(t,Q,u) satisfies a local Lipschitz condi- 

tion in G&W (1) 
2 ' and that it is continuous in all its arguments. Suppose 

(i> Ut(-s>g(s,$,u> is integrally bounded for 0s i.e. there exists an N - 

such that 

U(t+C,s)g(s,$,u(s))ds 5 N < ==, 
t 
0 

for all 0 E[-h,O]; 

(ii) lK(t) = {K(t,u(t)): usIF'} 

is convex for each t; 

(iii) IL(t) = {K(t,u(t)) + g(t,$),u(t)): uEIP] 

is convex for each tlt,,$ E W2 (1) . 
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'(iv) There exists an M>O such that 

IK(t,u) 1 L MIIuII 

for all u~lp, tE:IE[tO,tl] and each I. 

(v) The trivial solution of (8) is uniformly stable. 

Then (14) is function space controllable if and only if (1) is function 

space controllable. 

We need the following Lemma. 

Lemma 7.1. Let the assumptions of Theorem 7.1 hold. (1) Let Q&W2 . Then there 

exists a time t >t l- 0 such that: For any $&W2 (1) there exists a UEIP such that 

the solution x(t;O,u) of 

;r(t> = L(t,xt) + K(t,u(t)) + g(t,$',u(t>), 

x(t) f 0 v t E [to-h,tO] 

satisfies x =O 
5 

Proof. From the assumptions, there exists an N>O such that 

Ii/t Ut(- ,~Ms,$,u(d)dsll ( N 
tO 

for all $ cW2 (l),, t>t -0 and uEP. Bacause of the controllability assumption, 

Remark 2.2 and Theorem 4.1 we can choose a tlztO, such that if &=2N+r, where 

?+I[@/, then 

G(tl,to) = c/ 
5 

tO 
U$,s)u(s,u(s))ds u:EIP) 1 SE, 

where S is an E-ball in W2 (1) . E 
Since C(tl, o t > is convex by Theorem 3.1 we have 

CI E G(t,,t,> + G(t+& 

(1) for every $EW2 , 

where 

dtl,to) = IJ 5 

t0 

LJ$,s)g(s,$,u(s))ds: UE IPI. 
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Hence, for every $ EW2 (1) there exists a uEIP such that 

@=/ 5 
u,(‘,d [h(s,u(s)) + g(s,+,u(s))lds 

tO 

=x 
5' 

where x(t,tO,O,u) is a solution of the equation in Lemma 7.1. 

Proof of Theorem 7.1. Suppose (1) is not function space controllable, then 

by Theorem 4.1, (1) is not asymptotically proper: there exists a G-0, n &W (1) 
2 

Tl such that 

(l-l, je Ut(' ,s)K(s,u(s))ds) 5 E 
t 

0 

for all t2to, uEIP. 

By assumption, Ut(*,s)g(s,@,u) is integrably bounded, so that there exists an 

N= such that 

1 (n, It u,(*,s>g(s,~,u(s))ds)l L Nlbdl 
tO 

(1) for all tlto, uElP, $EW2 . Now choose 0 EWE (1) such that 

frl,o') ' E + Nllrlll. 

If there exists some u&II' such that the solution x(t;tO,O,u) of (14) satisfies 

xt =a at some tl, then 
1 

!D=/ 5 

tO 
IJ (-,s) [K(s,u(s)) + s(s,x,,u(s>)lds 

5 

and 

(rl,@') 5_ E + Nllrlll, 

which contradicts the choice of 0. Hence (14) is not function space controllable. 

Conversely, assume (14) is function space controllable and fix QEW (1) 
2 * Let 

tllto be given by Lemma 7.1. Then given any $, EWE (1) , there exists uOclP, 

such that the solution x(t;tO,O,u) of 

;r(t> = L&x& + K(t,uo(t)) + g(t,$,,u,(t)>, t>tO, 
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x(t) -0, + t&[tO-h,tO], 

satisfies x 
? 

= 0. This solution is given by 

xt = jt ut(*,s)W(s,uo(d> + g(Oo,uo(d>lds 
tO 

(17) 

Note that $,, xt cW2 (l) c c . _ It is convenient to work in the space C when we 

apply the Fan-Fixed point theorem. 

Let 

T(Qo) = (X~E C: u&IP, x satisfies (17), xt = o] 
1 

Just as in the proof of Theorem 6.1. T(QO) is nonempty, convex and bounded for 

each qOcC. T also has a closed graph. The proof of this last assertion follows 

that given in [45] p 259-260. If IM denotes the closure of the range of T on 

C then TM C_ C, and we can prove, just as in [451 that IPi is compact.. Hence 

T maps DI into a family of closed convex nonempty subsets of Df and T is upper 

semicontinuous. The Fan Fixed point theorem, Lemma 6.2, yields a fixed point 

$&T(q) which is the desired solution. 
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VII. Conclusion 

In chapter II, we generalize-the Liapunov-Yoshizawa techniques 

to give necessary and sufficient conditions for uniform boundedness 

and uniform ultimate boundedness of a rather general class of non- 

linear differential equations of neutral type. This is then applied 

to several linear and. nonlinear systems of equations including the 

generalized Lienard equation of neutral type. The calculations seem 

less cumbersome than is the case when Liapunov-Razsmikhin techniques 

are adopted as suggested in [3]. Only explicit Liapunov-Yoshizawa 

functionals are utilized in the applications. 

In chapter III, we apply the converse theorems of [15], [l] 

and chapter II, to investigate the boundedness of ordinary and here- 

ditary systems of Lurie type. When the uncontrolled systems are 

assumed to be uniform bounded and uniform ultimate bounded and when 

j" f(s)as + 03 as 1~1 + m, f(O) = 0, af(a) > o if u # 0, conditions 
0 
are obtained for the uniform boundedness of nonlinear ordinary diff- 

erential systems and hereditary systems of Lurie type described by 

the equations 

G(t) = A(t,x) + bf(u), 

G(t) = B(t,x) - rf(u); 

I;(t) = F(t,x$ + bf(u), 

G(t) = E(t.xt) - rf(u); 

(1) &t)xt) = F(t,xt) + bf(u) 

(2) G(t) = G(t,D(t)xt) - rf(u). 

In chapter IV, the problem of Lurie for system described by (1) and 

(2) is posed. Sufficient conditions are obtained for absolute 
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stability for the controlled system if it is assumed that the uncon- 

trolled plant equation 

(3) $D(t)x$ = F(t,xt) 

is uniformly asymptotically stable. Both 'the direct and indirect 

control cases are treated. 

In chapter V, we use Fan fixed pointed theorem to prove the 

existence of a solution of the neutral functional inclusion 

which satisfies the two point boundary values 

xto=+o' xtl=Q1 

where I$~,$~EC = C([-h,O],En). We then apply this existence result 

to present sufficient conditions on f, D and R which imply exact 

controllability between two functions in C for the system 

& D(t,xt) = f(t,x& u(t) ~R(t,x& 

UsSng a geometric growth condition in chapter VI, we characterize 

both the function space and Euclidean controllability of a nonlinear 

delay system which has a compact and convex control set. This extends 

analogous results for ordinary differential equations and yields con- 

ditions under which perturbed nonlinear delay controllable systems are 

controllable. 
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The treatment in chapter VI on controllability of systems with 

limited control power is not quite complete. Consider the system 

G(t) = AOx + Alx(t-h) + Bou(t) 

for example. The treatment in chapter VI does not give easily 

verifiable conditions for controllability. The following problem is 

suggested. Introduce the notion of a proper control system. This 

concept should be equivalent to controllability for delay systems 

with unlimited control power. Prove that if the uncontrolled system 

i = L(t,x$ is uniformly asymptotically stable and the control equation 

;c(t) = i(t,xt) + B(t)u(t) 

is proper then the control system is controllable. 
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convex control set. This yields conditions under which perturbed nonlinear delay 
controllable systems are controllable. 
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